Matching Items (3)
Filtering by

Clear all filters

151348-Thumbnail Image.png
Description
III-Nitride nanostructures have been an active area of research recently due to their ability to tune their optoelectronic properties. Thus far work has been done on InGaN quantum dots, nanowires, nanopillars, amongst other structures, but this research reports the creation of a new type of InGaN nanostructure, nanorings. Hexagonal InGaN

III-Nitride nanostructures have been an active area of research recently due to their ability to tune their optoelectronic properties. Thus far work has been done on InGaN quantum dots, nanowires, nanopillars, amongst other structures, but this research reports the creation of a new type of InGaN nanostructure, nanorings. Hexagonal InGaN nanorings were formed using Metal Organic Chemical Vapor Deposition through droplet epitaxy. The nanorings were thoroughly analyzed using x-ray diffraction, photoluminescence, electron microscopy, electron diffraction, and atomic force microscopy. Nanorings with high indium incorporation were achieved with indium content up to 50% that was then controlled using the growth time, temperature, In/Ga ratio and III/N ratio. The analysis showed that the nanoring shape is able to incorporate more indium than other nanostructures, due to the relaxing mechanism involved in the formation of the nanoring. The ideal conditions were determined to be growth of 30 second droplets with a growth time of 1 minute 30 seconds at 770 C to achieve the most well developed rings with the highest indium concentration.
ContributorsZaidi, Zohair (Author) / Mahajan, Subhash (Thesis advisor) / O'Connell, Michael J (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
150450-Thumbnail Image.png
Description
The goal of this research was to reduce dislocations and strain in high indium content bulk InGaN to improve quality for optical devices. In an attempt to achieve this goal, InGaN pillars were grown with compositions that matched the composition of the bulk InGaN grown on top. Pillar height and

The goal of this research was to reduce dislocations and strain in high indium content bulk InGaN to improve quality for optical devices. In an attempt to achieve this goal, InGaN pillars were grown with compositions that matched the composition of the bulk InGaN grown on top. Pillar height and density were optimized to facilitate coalescence on top of the pillars. It was expected that dislocations within the pillars would bend to side facets, thereby reducing the dislocation density in the bulk overgrowth, however this was not observed. It was also expected that pillars would be completely relaxed at the interface with the substrate. It was shown that pillars are mostly relaxed, but not completely. Mechanisms are proposed to explain why threading dislocations did not bend and how complete relaxation may have been achieved by mechanisms outside of interfacial misfit dislocation formation. Phase separation was not observed by TEM but may be related to the limitations of the sample or measurements. High indium observed at facets and stacking faults could be related to the extra photoluminescence peaks measured. This research focused on the InGaN pillars and first stages of coalescence on top of the pillars, saving bulk growth and device optimization for future research.
ContributorsMcFelea, Heather Dale (Author) / Mahajan, Subhash (Thesis advisor) / Arena, Chantal (Committee member) / Carpenter, Ray (Committee member) / Arizona State University (Publisher)
Created2011
149505-Thumbnail Image.png
Description
Owing to their special characteristics, group III-Nitride semiconductors have attracted special attention for their application in a wide range of optoelectronic devices. Of particular interest are their direct and wide band gaps that span from ultraviolet to the infrared wavelengths. In addition, their stronger bonds relative to the other compound

Owing to their special characteristics, group III-Nitride semiconductors have attracted special attention for their application in a wide range of optoelectronic devices. Of particular interest are their direct and wide band gaps that span from ultraviolet to the infrared wavelengths. In addition, their stronger bonds relative to the other compound semiconductors makes them thermally more stable, which provides devices with longer life time. However, the lattice mismatch between these semiconductors and their substrates cause the as-grown films to have high dislocation densities, reducing the life time of devices that contain these materials. One possible solution for this problem is to substitute single crystal semiconductor nanowires for epitaxial films. Due to their dimensionality, semiconductor nanowires typically have stress-free surfaces and better physical properties. In order to employ semiconductor nanowires as building blocks for nanoscale devices, a precise control of the nanowires' crystallinity, morphology, and chemistry is necessary. This control can be achieved by first developing a deeper understanding of the processes involved in the synthesis of nanowires, and then by determining the effects of temperature and pressure on their growth. This dissertation focuses on understanding of the growth processes involved in the formation of GaN nanowires. Nucleation and growth events were observed in situ and controlled in real-time using an environmental transmission electron microscope. These observations provide a satisfactory elucidation of the underlying growth mechanism during the formation of GaN nanowires. Nucleation of these nanowires appears to follow the vapor-liquid-solid mechanism. However, nanowire growth is found to follow both the vapor-liquid-solid and vapor-solid-solid mechanisms. Direct evidence of the effects of III/V ratio on nanowire growth is also reported, which provides important information for tailoring the synthesis of GaN nanowires. These findings suggest in situ electron microscopy is a powerful tool to understand the growth of GaN nanowires and also that these experimental approach can be extended to study other binary semiconductor compound such as GaP, GaAs, and InP, or even ternary compounds such as InGaN. However, further experimental work is required to fully elucidate the kinetic effects on the growth process. A better control of the growth parameters is also recommended.
ContributorsDíaz Rivas, Rosa Estela (Author) / Mahajan, Subhash (Thesis advisor) / Petuskey, William (Committee member) / Crozier, Peter (Committee member) / Arizona State University (Publisher)
Created2010