Matching Items (6)
Filtering by

Clear all filters

156112-Thumbnail Image.png
Description
Understanding how adherence affects outcomes is crucial when developing and assigning interventions. However, interventions are often evaluated by conducting randomized experiments and estimating intent-to-treat effects, which ignore actual treatment received. Dose-response effects can supplement intent-to-treat effects when participants are offered the full dose but many only receive a

Understanding how adherence affects outcomes is crucial when developing and assigning interventions. However, interventions are often evaluated by conducting randomized experiments and estimating intent-to-treat effects, which ignore actual treatment received. Dose-response effects can supplement intent-to-treat effects when participants are offered the full dose but many only receive a partial dose due to nonadherence. Using these data, we can estimate the magnitude of the treatment effect at different levels of adherence, which serve as a proxy for different levels of treatment. In this dissertation, I conducted Monte Carlo simulations to evaluate when linear dose-response effects can be accurately and precisely estimated in randomized experiments comparing a no-treatment control condition to a treatment condition with partial adherence. Specifically, I evaluated the performance of confounder adjustment and instrumental variable methods when their assumptions were met (Study 1) and when their assumptions were violated (Study 2). In Study 1, the confounder adjustment and instrumental variable methods provided unbiased estimates of the dose-response effect across sample sizes (200, 500, 2,000) and adherence distributions (uniform, right skewed, left skewed). The adherence distribution affected power for the instrumental variable method. In Study 2, the confounder adjustment method provided unbiased or minimally biased estimates of the dose-response effect under no or weak (but not moderate or strong) unobserved confounding. The instrumental variable method provided extremely biased estimates of the dose-response effect under violations of the exclusion restriction (no direct effect of treatment assignment on the outcome), though less severe violations of the exclusion restriction should be investigated.
ContributorsMazza, Gina L (Author) / Grimm, Kevin J. (Thesis advisor) / West, Stephen G. (Thesis advisor) / Mackinnon, David P (Committee member) / Tein, Jenn-Yun (Committee member) / Arizona State University (Publisher)
Created2018
157322-Thumbnail Image.png
Description
With improvements in technology, intensive longitudinal studies that permit the investigation of daily and weekly cycles in behavior have increased exponentially over the past few decades. Traditionally, when data have been collected on two variables over time, multivariate time series approaches that remove trends, cycles, and serial dependency have been

With improvements in technology, intensive longitudinal studies that permit the investigation of daily and weekly cycles in behavior have increased exponentially over the past few decades. Traditionally, when data have been collected on two variables over time, multivariate time series approaches that remove trends, cycles, and serial dependency have been used. These analyses permit the study of the relationship between random shocks (perturbations) in the presumed causal series and changes in the outcome series, but do not permit the study of the relationships between cycles. Liu and West (2016) proposed a multilevel approach that permitted the study of potential between subject relationships between features of the cycles in two series (e.g., amplitude). However, I show that the application of the Liu and West approach is restricted to a small set of features and types of relationships between the series. Several authors (e.g., Boker & Graham, 1998) proposed a connected mass-spring model that appears to permit modeling of more general cyclic relationships. I showed that the undamped connected mass-spring model is also limited and may be unidentified. To test the severity of the restrictions of the motion trajectories producible by the undamped connected mass-spring model I mathematically derived their connection to the force equations of the undamped connected mass-spring system. The mathematical solution describes the domain of the trajectory pairs that are producible by the undamped connected mass-spring model. The set of producible trajectory pairs is highly restricted, and this restriction sets major limitations on the application of the connected mass-spring model to psychological data. I used a simulation to demonstrate that even if a pair of psychological time-varying variables behaved exactly like two masses in an undamped connected mass-spring system, the connected mass-spring model would not yield adequate parameter estimates. My simulation probed the performance of the connected mass-spring model as a function of several aspects of data quality including number of subjects, series length, sampling rate relative to the cycle, and measurement error in the data. The findings can be extended to damped and nonlinear connected mass-spring systems.
ContributorsMartynova, Elena (M.A.) (Author) / West, Stephen G. (Thesis advisor) / Amazeen, Polemnia (Committee member) / Tein, Jenn-Yun (Committee member) / Arizona State University (Publisher)
Created2019
134593-Thumbnail Image.png
Description
The action of running is difficult to measure, but well worth it to receive valuable information about one of our most basic evolutionary functions. In the context of modern day, recreational runners typically listen to music while running, and so the purpose of this experiment is to analyze the influence

The action of running is difficult to measure, but well worth it to receive valuable information about one of our most basic evolutionary functions. In the context of modern day, recreational runners typically listen to music while running, and so the purpose of this experiment is to analyze the influence of music on running from a more dynamical approach. The first experiment was a running task involving running without a metronome and running with one while setting one's own preferred running tempo. The second experiment sought to manipulate the participant's preferred running tempo by having them listen to the metronome set at their preferred tempo, 20% above their preferred tempo, or 20% below. The purpose of this study is to analyze whether or not rhythmic perturbations different to one's preferred running tempo would interfere with one's preferred running tempo and cause a change in the variability of one's running patterns as well as a change in one's running performance along the measures of step rate, stride length, and stride pace. The evidence suggests that participants naturally entrained to the metronome tempo which influenced them to run faster or slower as a function of metronome tempo. However, this change was also accompanied by a shift in the variability of one's step rate and stride length.
ContributorsZavala, Andrew Geovanni (Author) / Amazeen, Eric (Thesis director) / Amazeen, Polemnia (Committee member) / Vedeler, Dankert (Committee member) / Department of Psychology (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154781-Thumbnail Image.png
Description
Researchers who conduct longitudinal studies are inherently interested in studying individual and population changes over time (e.g., mathematics achievement, subjective well-being). To answer such research questions, models of change (e.g., growth models) make the assumption of longitudinal measurement invariance. In many applied situations, key constructs are measured by a collection

Researchers who conduct longitudinal studies are inherently interested in studying individual and population changes over time (e.g., mathematics achievement, subjective well-being). To answer such research questions, models of change (e.g., growth models) make the assumption of longitudinal measurement invariance. In many applied situations, key constructs are measured by a collection of ordered-categorical indicators (e.g., Likert scale items). To evaluate longitudinal measurement invariance with ordered-categorical indicators, a set of hierarchical models can be sequentially tested and compared. If the statistical tests of measurement invariance fail to be supported for one of the models, it is useful to have a method with which to gauge the practical significance of the differences in measurement model parameters over time. Drawing on studies of latent growth models and second-order latent growth models with continuous indicators (e.g., Kim & Willson, 2014a; 2014b; Leite, 2007; Wirth, 2008), this study examined the performance of a potential sensitivity analysis to gauge the practical significance of violations of longitudinal measurement invariance for ordered-categorical indicators using second-order latent growth models. The change in the estimate of the second-order growth parameters following the addition of an incorrect level of measurement invariance constraints at the first-order level was used as an effect size for measurement non-invariance. This study investigated how sensitive the proposed sensitivity analysis was to different locations of non-invariance (i.e., non-invariance in the factor loadings, the thresholds, and the unique factor variances) given a sufficient sample size. This study also examined whether the sensitivity of the proposed sensitivity analysis depended on a number of other factors including the magnitude of non-invariance, the number of non-invariant indicators, the number of non-invariant occasions, and the number of response categories in the indicators.
ContributorsLiu, Yu, Ph.D (Author) / West, Stephen G. (Thesis advisor) / Tein, Jenn-Yun (Thesis advisor) / Green, Samuel (Committee member) / Grimm, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2016
155855-Thumbnail Image.png
Description
Time-to-event analysis or equivalently, survival analysis deals with two variables simultaneously: when (time information) an event occurs and whether an event occurrence is observed or not during the observation period (censoring information). In behavioral and social sciences, the event of interest usually does not lead to a terminal state

Time-to-event analysis or equivalently, survival analysis deals with two variables simultaneously: when (time information) an event occurs and whether an event occurrence is observed or not during the observation period (censoring information). In behavioral and social sciences, the event of interest usually does not lead to a terminal state such as death. Other outcomes after the event can be collected and thus, the survival variable can be considered as a predictor as well as an outcome in a study. One example of a case where the survival variable serves as a predictor as well as an outcome is a survival-mediator model. In a single survival-mediator model an independent variable, X predicts a survival variable, M which in turn, predicts a continuous outcome, Y. The survival-mediator model consists of two regression equations: X predicting M (M-regression), and M and X simultaneously predicting Y (Y-regression). To estimate the regression coefficients of the survival-mediator model, Cox regression is used for the M-regression. Ordinary least squares regression is used for the Y-regression using complete case analysis assuming censored data in M are missing completely at random so that the Y-regression is unbiased. In this dissertation research, different measures for the indirect effect were proposed and a simulation study was conducted to compare performance of different indirect effect test methods. Bias-corrected bootstrapping produced high Type I error rates as well as low parameter coverage rates in some conditions. In contrast, the Sobel test produced low Type I error rates as well as high parameter coverage rates in some conditions. The bootstrap of the natural indirect effect produced low Type I error and low statistical power when the censoring proportion was non-zero. Percentile bootstrapping, distribution of the product and the joint-significance test showed best performance. Statistical analysis of the survival-mediator model is discussed. Two indirect effect measures, the ab-product and the natural indirect effect are compared and discussed. Limitations and future directions of the simulation study are discussed. Last, interpretation of the survival-mediator model for a made-up empirical data set is provided to clarify the meaning of the quantities in the survival-mediator model.
ContributorsKim, Han Joe (Author) / Mackinnon, David P. (Thesis advisor) / Tein, Jenn-Yun (Thesis advisor) / West, Stephen G. (Committee member) / Grimm, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2017
155670-Thumbnail Image.png
Description
Statistical mediation analysis has been widely used in the social sciences in order to examine the indirect effects of an independent variable on a dependent variable. The statistical properties of the single mediator model with manifest and latent variables have been studied using simulation studies. However, the single mediator model

Statistical mediation analysis has been widely used in the social sciences in order to examine the indirect effects of an independent variable on a dependent variable. The statistical properties of the single mediator model with manifest and latent variables have been studied using simulation studies. However, the single mediator model with latent variables in the Bayesian framework with various accurate and inaccurate priors for structural and measurement model parameters has yet to be evaluated in a statistical simulation. This dissertation outlines the steps in the estimation of a single mediator model with latent variables as a Bayesian structural equation model (SEM). A Monte Carlo study is carried out in order to examine the statistical properties of point and interval summaries for the mediated effect in the Bayesian latent variable single mediator model with prior distributions with varying degrees of accuracy and informativeness. Bayesian methods with diffuse priors have equally good statistical properties as Maximum Likelihood (ML) and the distribution of the product. With accurate informative priors Bayesian methods can increase power up to 25% and decrease interval width up to 24%. With inaccurate informative priors the point summaries of the mediated effect are more biased than ML estimates, and the bias is higher if the inaccuracy occurs in priors for structural parameters than in priors for measurement model parameters. Findings from the Monte Carlo study are generalizable to Bayesian analyses with priors of the same distributional forms that have comparable amounts of (in)accuracy and informativeness to priors evaluated in the Monte Carlo study.
ContributorsMiočević, Milica (Author) / Mackinnon, David P. (Thesis advisor) / Levy, Roy (Thesis advisor) / Grimm, Kevin (Committee member) / West, Stephen G. (Committee member) / Arizona State University (Publisher)
Created2017