Matching Items (8)
Filtering by

Clear all filters

156579-Thumbnail Image.png
Description
The goal of diagnostic assessment is to discriminate between groups. In many cases, a binary decision is made conditional on a cut score from a continuous scale. Psychometric methods can improve assessment by modeling a latent variable using item response theory (IRT), and IRT scores can subsequently be used to

The goal of diagnostic assessment is to discriminate between groups. In many cases, a binary decision is made conditional on a cut score from a continuous scale. Psychometric methods can improve assessment by modeling a latent variable using item response theory (IRT), and IRT scores can subsequently be used to determine a cut score using receiver operating characteristic (ROC) curves. Psychometric methods provide reliable and interpretable scores, but the prediction of the diagnosis is not the primary product of the measurement process. In contrast, machine learning methods, such as regularization or binary recursive partitioning, can build a model from the assessment items to predict the probability of diagnosis. Machine learning predicts the diagnosis directly, but does not provide an inferential framework to explain why item responses are related to the diagnosis. It remains unclear whether psychometric and machine learning methods have comparable accuracy or if one method is preferable in some situations. In this study, Monte Carlo simulation methods were used to compare psychometric and machine learning methods on diagnostic classification accuracy. Results suggest that classification accuracy of psychometric models depends on the diagnostic-test correlation and prevalence of diagnosis. Also, machine learning methods that reduce prediction error have inflated specificity and very low sensitivity compared to the data-generating model, especially when prevalence is low. Finally, machine learning methods that use ROC curves to determine probability thresholds have comparable classification accuracy to the psychometric models as sample size, number of items, and number of item categories increase. Therefore, results suggest that machine learning models could provide a viable alternative for classification in diagnostic assessments. Strengths and limitations for each of the methods are discussed, and future directions are considered.
ContributorsGonzález, Oscar (Author) / Mackinnon, David P (Thesis advisor) / Edwards, Michael C (Thesis advisor) / Grimm, Kevin J. (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2018
157322-Thumbnail Image.png
Description
With improvements in technology, intensive longitudinal studies that permit the investigation of daily and weekly cycles in behavior have increased exponentially over the past few decades. Traditionally, when data have been collected on two variables over time, multivariate time series approaches that remove trends, cycles, and serial dependency have been

With improvements in technology, intensive longitudinal studies that permit the investigation of daily and weekly cycles in behavior have increased exponentially over the past few decades. Traditionally, when data have been collected on two variables over time, multivariate time series approaches that remove trends, cycles, and serial dependency have been used. These analyses permit the study of the relationship between random shocks (perturbations) in the presumed causal series and changes in the outcome series, but do not permit the study of the relationships between cycles. Liu and West (2016) proposed a multilevel approach that permitted the study of potential between subject relationships between features of the cycles in two series (e.g., amplitude). However, I show that the application of the Liu and West approach is restricted to a small set of features and types of relationships between the series. Several authors (e.g., Boker & Graham, 1998) proposed a connected mass-spring model that appears to permit modeling of more general cyclic relationships. I showed that the undamped connected mass-spring model is also limited and may be unidentified. To test the severity of the restrictions of the motion trajectories producible by the undamped connected mass-spring model I mathematically derived their connection to the force equations of the undamped connected mass-spring system. The mathematical solution describes the domain of the trajectory pairs that are producible by the undamped connected mass-spring model. The set of producible trajectory pairs is highly restricted, and this restriction sets major limitations on the application of the connected mass-spring model to psychological data. I used a simulation to demonstrate that even if a pair of psychological time-varying variables behaved exactly like two masses in an undamped connected mass-spring system, the connected mass-spring model would not yield adequate parameter estimates. My simulation probed the performance of the connected mass-spring model as a function of several aspects of data quality including number of subjects, series length, sampling rate relative to the cycle, and measurement error in the data. The findings can be extended to damped and nonlinear connected mass-spring systems.
ContributorsMartynova, Elena (M.A.) (Author) / West, Stephen G. (Thesis advisor) / Amazeen, Polemnia (Committee member) / Tein, Jenn-Yun (Committee member) / Arizona State University (Publisher)
Created2019
157034-Thumbnail Image.png
Description
To make meaningful comparisons on a construct of interest across groups or over time, measurement invariance needs to exist for at least a subset of the observed variables that define the construct. Often, chi-square difference tests are used to test for measurement invariance. However, these statistics are affected by sample

To make meaningful comparisons on a construct of interest across groups or over time, measurement invariance needs to exist for at least a subset of the observed variables that define the construct. Often, chi-square difference tests are used to test for measurement invariance. However, these statistics are affected by sample size such that larger sample sizes are associated with a greater prevalence of significant tests. Thus, using other measures of non-invariance to aid in the decision process would be beneficial. For this dissertation project, I proposed four new effect size measures of measurement non-invariance and analyzed a Monte Carlo simulation study to evaluate their properties and behavior in addition to the properties and behavior of an already existing effect size measure of non-invariance. The effect size measures were evaluated based on bias, variability, and consistency. Additionally, the factors that affected the value of the effect size measures were analyzed. All studied effect sizes were consistent, but three were biased under certain conditions. Further work is needed to establish benchmarks for the unbiased effect sizes.
ContributorsGunn, Heather J (Author) / Grimm, Kevin J. (Thesis advisor) / Edwards, Michael C (Thesis advisor) / Tein, Jenn-Yun (Committee member) / Anderson, Samantha F. (Committee member) / Arizona State University (Publisher)
Created2019
134593-Thumbnail Image.png
Description
The action of running is difficult to measure, but well worth it to receive valuable information about one of our most basic evolutionary functions. In the context of modern day, recreational runners typically listen to music while running, and so the purpose of this experiment is to analyze the influence

The action of running is difficult to measure, but well worth it to receive valuable information about one of our most basic evolutionary functions. In the context of modern day, recreational runners typically listen to music while running, and so the purpose of this experiment is to analyze the influence of music on running from a more dynamical approach. The first experiment was a running task involving running without a metronome and running with one while setting one's own preferred running tempo. The second experiment sought to manipulate the participant's preferred running tempo by having them listen to the metronome set at their preferred tempo, 20% above their preferred tempo, or 20% below. The purpose of this study is to analyze whether or not rhythmic perturbations different to one's preferred running tempo would interfere with one's preferred running tempo and cause a change in the variability of one's running patterns as well as a change in one's running performance along the measures of step rate, stride length, and stride pace. The evidence suggests that participants naturally entrained to the metronome tempo which influenced them to run faster or slower as a function of metronome tempo. However, this change was also accompanied by a shift in the variability of one's step rate and stride length.
ContributorsZavala, Andrew Geovanni (Author) / Amazeen, Eric (Thesis director) / Amazeen, Polemnia (Committee member) / Vedeler, Dankert (Committee member) / Department of Psychology (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
168753-Thumbnail Image.png
Description
Latent profile analysis (LPA), a type of finite mixture model, has grown in popularity due to its ability to detect latent classes or unobserved subgroups within a sample. Though numerous methods exist to determine the correct number of classes, past research has repeatedly demonstrated that no one method is consistently

Latent profile analysis (LPA), a type of finite mixture model, has grown in popularity due to its ability to detect latent classes or unobserved subgroups within a sample. Though numerous methods exist to determine the correct number of classes, past research has repeatedly demonstrated that no one method is consistently the best as each tends to struggle under specific conditions. Recently, the likelihood incremental percentage per parameter (LI3P), a method using a new approach, was proposed and tested which yielded promising initial results. To evaluate this new method more thoroughly, this study simulated 50,000 datasets, manipulating factors such as sample size, class distance, number of items, and number of classes. After evaluating the performance of the LI3P on simulated data, the LI3P is applied to LPA models fit to an empirical dataset to illustrate the method’s application. Results indicate the LI3P performs in line with standard class enumeration techniques, and primarily reflects class separation and the number of classes.
ContributorsHoupt, Russell Paul (Author) / Grimm, Kevin J (Thesis advisor) / McNeish, Daniel (Committee member) / Edwards, Michael C (Committee member) / Arizona State University (Publisher)
Created2022
187720-Thumbnail Image.png
Description
Decision trees is a machine learning technique that searches the predictor space for the variable and observed value that leads to the best prediction when the data are split into two nodes based on the variable and splitting value. Conditional Inference Trees (CTREEs) is a non-parametric class of decision trees

Decision trees is a machine learning technique that searches the predictor space for the variable and observed value that leads to the best prediction when the data are split into two nodes based on the variable and splitting value. Conditional Inference Trees (CTREEs) is a non-parametric class of decision trees that uses statistical theory in order to select variables for splitting. Missing data can be problematic in decision trees because of an inability to place an observation with a missing value into a node based on the chosen splitting variable. Moreover, missing data can alter the selection process because of its inability to place observations with missing values. Simple missing data approaches (e.g., deletion, majority rule, and surrogate split) have been implemented in decision tree algorithms; however, more sophisticated missing data techniques have not been thoroughly examined. In addition to these approaches, this dissertation proposed a modified multiple imputation approach to handling missing data in CTREEs. A simulation was conducted to compare this approach with simple missing data approaches as well as single imputation and a multiple imputation with prediction averaging. Results revealed that simple approaches (i.e., majority rule, treat missing as its own category, and listwise deletion) were effective in handling missing data in CTREEs. The modified multiple imputation approach did not perform very well against simple approaches in most conditions, but this approach did seem best suited for small sample sizes and extreme missingness situations.
ContributorsManapat, Danielle Marie (Author) / Grimm, Kevin J (Thesis advisor) / Edwards, Michael C (Thesis advisor) / McNeish, Daniel (Committee member) / Anderson, Samantha F (Committee member) / Arizona State University (Publisher)
Created2023
157542-Thumbnail Image.png
Description
Statistical inference from mediation analysis applies to populations, however, researchers and clinicians may be interested in making inference to individual clients or small, localized groups of people. Person-oriented approaches focus on the differences between people, or latent groups of people, to ask how individuals differ across variables, and can hel

Statistical inference from mediation analysis applies to populations, however, researchers and clinicians may be interested in making inference to individual clients or small, localized groups of people. Person-oriented approaches focus on the differences between people, or latent groups of people, to ask how individuals differ across variables, and can help researchers avoid ecological fallacies when making inferences about individuals. Traditional variable-oriented mediation assumes the population undergoes a homogenous reaction to the mediating process. However, mediation is also described as an intra-individual process where each person passes from a predictor, through a mediator, to an outcome (Collins, Graham, & Flaherty, 1998). Configural frequency mediation is a person-oriented analysis of contingency tables that has not been well-studied or implemented since its introduction in the literature (von Eye, Mair, & Mun, 2010; von Eye, Mun, & Mair, 2009). The purpose of this study is to describe CFM and investigate its statistical properties while comparing it to traditional and casual inference mediation methods. The results of this study show that joint significance mediation tests results in better Type I error rates but limit the person-oriented interpretations of CFM. Although the estimator for logistic regression and causal mediation are different, they both perform well in terms of Type I error and power, although the causal estimator had higher bias than expected, which is discussed in the limitations section.
ContributorsSmyth, Heather Lynn (Author) / Mackinnon, David P (Thesis advisor) / Grimm, Kevin J. (Committee member) / Edwards, Michael C (Committee member) / Arizona State University (Publisher)
Created2019
168527-Thumbnail Image.png
Description
Scale scores play a significant role in research and practice in a wide range of areas such as education, psychology, and health sciences. Although the methods of scale scoring have advanced considerably over the last 100 years, researchers and practitioners have generally been slow to implement these advances. There are

Scale scores play a significant role in research and practice in a wide range of areas such as education, psychology, and health sciences. Although the methods of scale scoring have advanced considerably over the last 100 years, researchers and practitioners have generally been slow to implement these advances. There are many topics that fall under this umbrella but the current study focuses on two. The first topic is that of subscores and total scores. Many of the scales in psychological and health research are designed to yield subscores, yet it is common to see total scores reported instead. Simplifying scores in this way, however, may have important implications for researchers and scale users in terms of interpretation and use. The second topic is subscore augmentation. That is, if there are subscores, how much value is there in using a subscore augmentation method? Most people using psychological assessments are unfamiliar with score augmentation techniques and the potential benefits they may have over the traditional sum score approach. The current study borrows methods from education to explore the magnitude of improvement of using augmented scores over observed scores. Data was simulated using the Graded Response Model. Factors controlled in the simulation were number of subscales, number of items per subscale, level of correlation between subscales, and sample size. Four estimates of the true subscore were considered (raw, subscore-adjusted, total score-adjusted, joint score-adjusted). Results from the simulation suggest that the score adjusted with total score information may perform poorly when the level of inter-subscore correlation is 0.3. Joint scores perform well most of the time, and the subscore-adjusted scores and joint-adjusted scores were always better performers than raw scores. Finally, general advice to applied users is provided.
ContributorsGardner, Molly (Author) / Edwards, Michael C (Thesis advisor) / McNeish, Daniel (Committee member) / Levy, Roy (Committee member) / Arizona State University (Publisher)
Created2022