Matching Items (5)
Filtering by

Clear all filters

134544-Thumbnail Image.png
Description
This thesis presents an approach to design and implementation of an adaptive boundary coverage control strategy for a swarm robotic system. Several fields of study are relevant to this project, including; dynamic modeling, control theory, programming, and robotic design. Tools and techniques from these fields were used to design and

This thesis presents an approach to design and implementation of an adaptive boundary coverage control strategy for a swarm robotic system. Several fields of study are relevant to this project, including; dynamic modeling, control theory, programming, and robotic design. Tools and techniques from these fields were used to design and implement a model simulation and an experimental testbed. To achieve this goal, a simulation of the boundary coverage control strategy was first developed. This simulated model allowed for concept verification for different robot groups and boundary designs. The simulation consisted of a single, constantly expanding circular boundary with a modeled swarm of robots that autonomously allocate themselves around the boundary. Ultimately, this simulation was implemented in an experimental testbed consisting of mobile robots and a moving boundary wall to exhibit the behaviors of the simulated robots. The conclusions from this experiment are hoped to help make further advancements to swarm robotic technology. The results presented show promise for future progress in adaptive control strategies for robotic swarms.
ContributorsMurphy, Hunter Nicholas (Author) / Berman, Spring (Thesis director) / Marvi, Hamid (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how

To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how to build low-cost multi-capability robot platform

that can be used for conducting FAME research.

A TFC-KIT car chassis was augmented to provide a suite of substantive capabilities.

The augmented vehicle (FreeSLAM Robot) costs less than $500 but offers the capability

of commercially available vehicles costing over $2000.

All demonstrations presented involve rear-wheel drive FreeSLAM robot. The following

summarizes the key hardware demonstrations presented and analyzed:

(1)Cruise (v, ) control along a line,

(2) Cruise (v, ) control along a curve,

(3) Planar (x, y) Cartesian Stabilization for rear wheel drive vehicle,

(4) Finish the track with camera pan tilt structure in minimum time,

(5) Finish the track without camera pan tilt structure in minimum time,

(6) Vision based tracking performance with different cruise speed vx,

(7) Vision based tracking performance with different camera fixed look-ahead distance L,

(8) Vision based tracking performance with different delay Td from vision subsystem,

(9) Manually remote controlled robot to perform indoor SLAM,

(10) Autonomously line guided robot to perform indoor SLAM.

For most cases, hardware data is compared with, and corroborated by, model based

simulation data. In short, the thesis uses low-cost self-designed rear-wheel

drive robot to demonstrate many capabilities that are critical in order to reach the

longer-term FAME goal.
ContributorsLu, Xianglong (Author) / Rodriguez, Armando Antonio (Thesis advisor) / Berman, Spring (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2016
156281-Thumbnail Image.png
Description
Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time.

Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time. The focus of this work is to develop a new method of energy storage and charging for autonomous UAV systems, for use during long-term deployments in a constrained environment. We developed a charging solution that allows pre-equipped UAV system to land on top of designated charging pads and rapidly replenish their battery reserves, using a contact charging point. This system is designed to work with all types of rechargeable batteries, focusing on Lithium Polymer (LiPo) packs, that incorporate a battery management system for increased reliability. The project also explores optimization methods for fleets of UAV systems, to increase charging efficiency and extend battery lifespans. Each component of this project was first designed and tested in computer simulation. Following positive feedback and results, prototypes for each part of this system were developed and rigorously tested. Results show that the contact charging method is able to charge LiPo batteries at a 1-C rate, which is the industry standard rate, maintaining the same safety and efficiency standards as modern day direct connection chargers. Control software for these base stations was also created, to be integrated with a fleet management system, and optimizes UAV charge levels and distribution to extend LiPo battery lifetimes while still meeting expected mission demand. Each component of this project (hardware/software) was designed for manufacturing and implementation using industry standard tools, making it ideal for large-scale implementations. This system has been successfully tested with a fleet of UAV systems at Arizona State University, and is currently being integrated into an Arizona smart city environment for deployment.
ContributorsMian, Sami (Author) / Panchanathan, Sethuraman (Thesis advisor) / Berman, Spring (Committee member) / Yang, Yezhou (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2018
158221-Thumbnail Image.png
Description
The problem of modeling and controlling the distribution of a multi-agent system has recently evolved into an interdisciplinary effort. When the agent population is very large, i.e., at least on the order of hundreds of agents, it is important that techniques for analyzing and controlling the system scale well with

The problem of modeling and controlling the distribution of a multi-agent system has recently evolved into an interdisciplinary effort. When the agent population is very large, i.e., at least on the order of hundreds of agents, it is important that techniques for analyzing and controlling the system scale well with the number of agents. One scalable approach to characterizing the behavior of a multi-agent system is possible when the agents' states evolve over time according to a Markov process. In this case, the density of agents over space and time is governed by a set of difference or differential equations known as a {\it mean-field model}, whose parameters determine the stochastic control policies of the individual agents. These models often have the advantage of being easier to analyze than the individual agent dynamics. Mean-field models have been used to describe the behavior of chemical reaction networks, biological collectives such as social insect colonies, and more recently, swarms of robots that, like natural swarms, consist of hundreds or thousands of agents that are individually limited in capability but can coordinate to achieve a particular collective goal.

This dissertation presents a control-theoretic analysis of mean-field models for which the agent dynamics are governed by either a continuous-time Markov chain on an arbitrary state space, or a discrete-time Markov chain on a continuous state space. Three main problems are investigated. First, the problem of stabilization is addressed, that is, the design of transition probabilities/rates of the Markov process (the agent control parameters) that make a target distribution, satisfying certain conditions, invariant. Such a control approach could be used to achieve desired multi-agent distributions for spatial coverage and task allocation. However, the convergence of the multi-agent distribution to the designed equilibrium does not imply the convergence of the individual agents to fixed states. To prevent the agents from continuing to transition between states once the target distribution is reached, and thus potentially waste energy, the second problem addressed within this dissertation is the construction of feedback control laws that prevent agents from transitioning once the equilibrium distribution is reached. The third problem addressed is the computation of optimized transition probabilities/rates that maximize the speed at which the system converges to the target distribution.
ContributorsBiswal, Shiba (Author) / Berman, Spring (Thesis advisor) / Fainekos, Georgios (Committee member) / Lanchier, Nicolas (Committee member) / Mignolet, Marc (Committee member) / Peet, Matthew (Committee member) / Arizona State University (Publisher)
Created2020
161731-Thumbnail Image.png
Description
As technological advancements in silicon, sensors, and actuation continue, the development of robotic swarms is shifting from the domain of science fiction to reality. Many swarm applications, such as environmental monitoring, precision agriculture, disaster response, and lunar prospecting, will require controlling numerous robots with limited capabilities and information to redistribute

As technological advancements in silicon, sensors, and actuation continue, the development of robotic swarms is shifting from the domain of science fiction to reality. Many swarm applications, such as environmental monitoring, precision agriculture, disaster response, and lunar prospecting, will require controlling numerous robots with limited capabilities and information to redistribute among multiple states, such as spatial locations or tasks. A scalable control approach is to program the robots with stochastic control policies such that the robot population in each state evolves according to a mean-field model, which is independent of the number and identities of the robots. Using this model, the control policies can be designed to stabilize the swarm to the target distribution. To avoid the need to reprogram the robots for different target distributions, the robot control policies can be defined to depend only on the presence of a “leader” agent, whose control policy is designed to guide the swarm to a particular distribution. This dissertation presents a novel deep reinforcement learning (deep RL) approach to designing control policies that redistribute a swarm as quickly as possible over a strongly connected graph, according to a mean-field model in the form of the discrete-time Kolmogorov forward equation. In the leader-based strategies, the leader determines its next action based on its observations of robot populations and shepherds the swarm over the graph by probabilistically repelling nearby robots. The scalability of this approach with the swarm size is demonstrated with leader control policies that are designed using two tabular Temporal-Difference learning algorithms, trained on a discretization of the swarm distribution. To improve the scalability of the approach with robot population and graph size, control policies for both leader-based and leaderless strategies are designed using an actor-critic deep RL method that is trained on the swarm distribution predicted by the mean-field model. In the leaderless strategy, the robots’ control policies depend only on their local measurements of nearby robot populations. The control approaches are validated for different graph and swarm sizes in numerical simulations, 3D robot simulations, and experiments on a multi-robot testbed.
ContributorsKakish, Zahi Mousa (Author) / Berman, Spring (Thesis advisor) / Yong, Sze Zheng (Committee member) / Marvi, Hamid (Committee member) / Pavlic, Theodore (Committee member) / Pratt, Stephen (Committee member) / Ben Amor, Hani (Committee member) / Arizona State University (Publisher)
Created2021