Matching Items (3)
Filtering by

Clear all filters

134518-Thumbnail Image.png
Description
This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was achieved using two syringe pumps simultaneously delivering polymer dope and

This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was achieved using two syringe pumps simultaneously delivering polymer dope and bore fluid to the spinneret. Based on apparatus runs performed with Polysulfone (PSF) dopes dissolved in N,N-Dimethylacetamide and supporting rheological analysis, the entanglement concentration, ce, was identified as a minimum processing threshold for creating HFMs. Similarly, significant increases in the ultimate tensile strength, fracture strain, and Young's modulus for extruded HFMs were observed as polymer dope concentration was increased at levels near ce. Beyond this initial increase, subsequent tests at higher PSF concentrations yielded diminishing changes in mechanical properties, suggesting an asymptotic approach to a point where the trend would cease. Without further research, it is theorized that this point falls on a transition from the semidiute entangled to concentrated concentration regimes. SEM imaging of samples revealed the formation of grooved structures on the inner surface of samples, which was determined to be a result of the low flowrate and polymer dope concentrations used in processing the HFMs during apparatus runs. Based on continued operation of the preliminary apparatus design, many areas of improvement were noted. Namely, these consisted of controlling the collector speed, eliminating rubbing of nascent fibers against the edge of the coagulation bath by installing an elevated roller, and replacing tygon tubing for the polymer line with a luer lock adapter for direct syringe attachment to the spinneret.
ContributorsBridge, Alexander Thomas (Author) / Green, Matthew D. (Thesis director) / Lin, Jerry Y. S. (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154445-Thumbnail Image.png
Description
X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel

X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel the structures of complex proteins with vital biological functions. A key step and major bottleneck of structure determination is protein crystallization, which is very arduous due to the complexity of proteins and their natural environments. Furthermore, crystal characteristics govern data quality, thus need to be optimized to attain the most accurate reconstruction of the protein structure. Crystal size is one such characteristic in which narrowed distributions with a small modal size can significantly reduce the amount of protein needed for SFX. A novel microfluidic sorting platform was developed to isolate viable ~200 nm – ~600 nm photosystem I (PSI) membrane protein crystals from ~200 nm – ~20 μm crystal samples using dielectrophoresis, as confirmed by fluorescence microscopy, second-order nonlinear imaging of chiral crystals (SONICC), and dynamic light scattering. The platform was scaled-up to rapidly provide 100s of microliters of sorted crystals necessary for SFX, in which similar crystal size distributions were attained. Transmission electron microscopy was used to view the PSI crystal lattice, which remained well-ordered postsorting, and SFX diffraction data was obtained, confirming a high-quality, viable crystal sample. Simulations indicated sorted samples provided accurate, complete SFX datasets with 3500-fold less protein than unsorted samples. Microfluidic devices were also developed for versatile, rapid protein crystallization screening using nanovolumes of sample. Concentration gradients of protein and precipitant were generated to crystallize PSI, phycocyanin, and lysozyme using modified counterdiffusion. Additionally, a passive mixer was created to generate unique solution concentrations within isolated nanowells to crystallize phycocyanin and lysozyme. Crystal imaging with brightfield microscopy, UV fluorescence, and SONICC coupled with numerical modeling allowed quantification of crystal growth conditions for efficient phase diagram development. The developed microfluidic tools demonstrated the capability of improving samples for protein crystallography, offering a foundation for continued development of platforms to aid protein structure determination.
ContributorsAbdallah, Bahige G (Author) / Ros, Alexandra (Thesis advisor) / Buttry, Daniel (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2016