Matching Items (16)
Filtering by

Clear all filters

151979-Thumbnail Image.png
Description
Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the interface, new self-assembly phenomena emerge. ILs are ionic compounds that are liquid at room temperature (essentially molten salts at ambient conditions) that have remarkable properties such as negligible volatility and high chemical stability and can be optimized for nearly any application. The nature of IL-fluid interfaces has not yet been studied in depth. Consequently, the corresponding self-assembly phenomena have not yet been explored. We demonstrate how the unique molecular nature of ILs allows for new self-assembly phenomena to take place at their interfaces. These phenomena include droplet bridging (the self-assembly of both particles and emulsion droplets), spontaneous particle transport through the liquid-liquid interface, and various gelation behaviors. In droplet bridging, self-assembled monolayers of particles effectively "glue" emulsion droplets to one another, allowing the droplets to self-assembly into large networks. With particle transport, it is experimentally demonstrated the ILs overcome the strong adhesive nature of the liquid-liquid interface and extract solid particles from the bulk phase without the aid of external forces. These phenomena are quantified and corresponding mechanisms are proposed. The experimental investigations are supported by molecular dynamics (MD) simulations, which allow for a molecular view of the self-assembly process. In particular, we show that particle self-assembly depends primarily on the surface chemistry of the particles and the non-IL fluid at the interface. Free energy calculations show that the attractive forces between nanoparticles and the liquid-liquid interface are unusually long-ranged, due to capillary waves. Furthermore, IL cations can exhibit molecular ordering at the IL-oil interface, resulting in a slight residual charge at this interface. We also explore the transient IL-IL interface, revealing molecular interactions responsible for the unusually slow mixing dynamics between two ILs. This dissertation, therefore, contributes to both experimental and theoretical understanding of particle self-assembly at IL based interfaces.
ContributorsFrost, Denzil (Author) / Dai, Lenore L (Thesis advisor) / Torres, César I (Committee member) / Nielsen, David R (Committee member) / Squires, Kyle D (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2013
Description
As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher

As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher the genetic information stored in these captivating molecules. Meanwhile, another group of researchers, nanotechnologists in particular, have discovered that the unique and concise structural features of DNA together with its information coding ability can be utilized for nano-construction efforts. This idea culminated in the birth of the field of DNA nanotechnology which is the main topic of this dissertation. The ability of rationally designed DNA strands to self-assemble into arbitrary nanostructures without external direction is the basis of this field. A series of novel design principles for DNA nanotechnology are presented here, from topological DNA nanostructures to complex and curved DNA nanostructures, from pure DNA nanostructures to hybrid RNA/DNA nanostructures. As one of the most important and pioneering fields in controlling the assembly of materials (both DNA and other materials) at the nanoscale, DNA nanotechnology is developing at a dramatic speed and as more and more construction approaches are invented, exciting advances will emerge in ways that we may or may not predict.
ContributorsHan, Dongran (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Ros, Anexandra (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2012
152470-Thumbnail Image.png
Description
DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the

DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the massive parallelism that is inherent in natural systems to solve computational problems. This dissertation focuses on building novel types of computational DNA systems based on both DNA reaction networks and DNA nanotechnology. A series of related research projects are presented here. First, a novel, three-input majority logic gate based on DNA strand displacement reactions was constructed. Here, the three inputs in the majority gate have equal priority, and the output will be true if any two of the inputs are true. We subsequently designed and realized a complex, 5-input majority logic gate. By controlling two of the five inputs, the complex gate is capable of realizing every combination of OR and AND gates of the other 3 inputs. Next, we constructed a half adder, which is a basic arithmetic unit, from DNA strand operated XOR and AND gates. The aim of these two projects was to develop novel types of DNA logic gates to enrich the DNA computation toolbox, and to examine plausible ways to implement large scale DNA logic circuits. The third project utilized a two dimensional DNA origami frame shaped structure with a hollow interior where DNA hybridization seeds were selectively positioned to control the assembly of small DNA tile building blocks. The small DNA tiles were directed to fill the hollow interior of the DNA origami frame, guided through sticky end interactions at prescribed positions. This research shed light on the fundamental behavior of DNA based self-assembling systems, and provided the information necessary to build programmed nanodisplays based on the self-assembly of DNA.
ContributorsLi, Wei (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
152821-Thumbnail Image.png
Description
Colloidal quantum dots (QDs) or semiconductor nanocrystals are often used to describe 2 to 20 nm solution processed nanoparticles of various semiconductor materials that display quantum confinement effects. Compared to traditional fluorescent organic dyes, QDs provide many advantages. For biological applications it is necessary to develop reliable methods to functionalize

Colloidal quantum dots (QDs) or semiconductor nanocrystals are often used to describe 2 to 20 nm solution processed nanoparticles of various semiconductor materials that display quantum confinement effects. Compared to traditional fluorescent organic dyes, QDs provide many advantages. For biological applications it is necessary to develop reliable methods to functionalize QDs with hydrophilic biomolecules so that they may maintain their stability and functionality in physiological conditions. DNA, a molecule that encodes genetic information, is arguably the smartest molecule that nature has ever produced and one of the most explored bio-macromolecules. DNA directed self-assembly can potentially organize QDs that are functionalized with DNA with nanometer precision, and the resulting arrangements may facilitate the display of novel optical properties. The goal of this dissertation was to achieve a robust reliable yet simple strategy to link DNA to QDs so that they can be used for DNA directed self assembly by which we can engineer their optical properties. Presented here is a series of studies to achieve this goal. First we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. We next employed this shell synthesis strategy to conjugate PS-PO chimeric DNA to QDs at the time of shell synthesis. We synthesized a library of DNA linked QDs emitting from UV to near IR that are very stable in high salt concentrations. These DNA functionalized QDs were further site-specifically organized on DNA origami in desired patterns directed by DNA self-assembly. We further extended our capability to functionalize DNA to real IR emitting CdxPb1-xTe alloyed QDs, and demonstrated their stability by self-assembling them on DNA origami. The photo-physical properties of the QDs were further engineered by attaching a QD and a gold nanoparticle in controlled distances on the same DNA origami, which revealed a much longer range quenching effect than usual Forster Resonance Energy Transfer. We are currently engaged in enhancing photoluminescence intensity of the QDs by bringing them in the plasmonic hot spots generated by cluster of larger plasmonic nanoparticles.
ContributorsSamanta, Anirban (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Buttry, Daniel (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
152622-Thumbnail Image.png
Description
Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems continues to be a great chal-lenge. Conversely, deoxyribonucleic acid (DNA) engineering is now routinely used to build a wide variety of two dimensional and three dimensional (3D) nanostructures from simple hybridization based

Proteins and peptides fold into dynamic structures that access a broad functional landscape, however, designing artificial polypeptide systems continues to be a great chal-lenge. Conversely, deoxyribonucleic acid (DNA) engineering is now routinely used to build a wide variety of two dimensional and three dimensional (3D) nanostructures from simple hybridization based rules, and their functional diversity can be significantly ex-panded through site specific incorporation of the appropriate guest molecules. This dis-sertation describes a gentle methodology for using short (8 nucleotide) peptide nucleic acid (PNA) linkers to assemble polypeptides within a 3D DNA nanocage, as a proof of concept for constructing artificial catalytic centers. PNA-polypeptide conjugates were synthesized directly using microwave assisted solid phase synthesis or alternatively PNA linkers were conjugated to biologically expressed proteins using chemical crosslinking. The PNA-polypeptides hybridized to the preassembled DNA nanocage at room tempera-ture or 11 ⁰C and could be assembled in a stepwise fashion. Time resolved fluorescence anisotropy and gel electrophoresis were used to determine that a negatively charged az-urin protein was repelled outside of the negatively charged DNA nanocage, while a posi-tively charged cytochrome c protein was retained inside. Spectroelectrochemistry and an in-gel luminol oxidation assay demonstrated the cytochrome c protein remained active within the DNA nanocage and its redox potential decreased modestly by 10 mV due to the presence of the DNA nanocage. These results demonstrate the benign PNA assembly conditions are ideal for preserving polypeptide structure and function, and will facilitate the polypeptide-based assembly of artificial catalytic centers inside a stable DNA nanocage. A prospective application of assembling multiple cyclic γ-PNA-peptides to mimic the oxygen-evolving complex (OEC) catalytic active site from photosystem II (PSII) is described. In this way, the robust catalytic capacity of PSII could be utilized, without suffering the light-induced damage that occurs by the photoreactions within PSII via triplet state formation, which limits the efficiency of natural photosynthesis. There-fore, this strategy has the potential to revolutionize the process of designing and building robust catalysts by leveraging nature's recipes, and also providing a flexible and con-trolled artificial environment that might even improve them further towards commercial viability.
ContributorsFlory, Justin David (Author) / Fromme, Petra (Thesis advisor) / Yan, Hao (Committee member) / Buttry, Daniel (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2014
156739-Thumbnail Image.png
Description
Rubisco activase (Rca) from higher plants is a stromal ATPase essential for reactivating Rubiscos rendered catalytically inactive by endogenous inhibitors. Rca’s functional state is thought to consist of ring-like hexameric assemblies, similar to other members of the AAA+ protein superfamily. However, unlike other members, it does not form obligate hexamers

Rubisco activase (Rca) from higher plants is a stromal ATPase essential for reactivating Rubiscos rendered catalytically inactive by endogenous inhibitors. Rca’s functional state is thought to consist of ring-like hexameric assemblies, similar to other members of the AAA+ protein superfamily. However, unlike other members, it does not form obligate hexamers and is quite polydisperse in solution, making elucidation of its self-association pathway challenging. This polydispersity also makes interpretation of traditional biochemical approaches difficult, prompting use of a fluorescence-based technique (Fluorescence Correlation Spectroscopy) to investigate the relationship between quaternary structure and function. Like cotton β Rca, tobacco β Rca appears to assemble in a step-wise and nucleotide-dependent manner. Incubation in varying nucleotides appears to alter the equilibrium between varying oligomers, either promoting or minimizing the formation of larger oligomers. High concentrations of ADP seem to favor continuous assembly towards larger oligomers, while assembly in the presence of ATP-yS (an ATP analog) appears to halt continuous assembly in favor of hexameric species. In contrast, assembly in the “Active ATP Turnover” condition (a mixture of ATP and ADP) appears to favor an almost equal distribution of tetramer and hexamer, which when compared with ATPase activity, shows great alignment with maximum activity in the low µM range. Despite this alignment, the decrease in ATPase activity does not follow any particular oligomer, but rather decreases with increasing aggregation, suggesting that assembly dynamics may regulate ATPase activity, rather than the formation/disappearance of one specific oligomer. Work presented here also indicates that all oligomers larger than hexamers are catalytically inactive, thus providing support for the idea that they may serve as a storage mechanism to minimize wasteful hydrolysis. These findings are also supported by assembly work carried out on an Assembly Mutant (R294V), known for favoring formation of closed-ring hexamers. Similar assembly studies were carried out on spinach Rca, however, due to its aggregation propensity, FCS results were more difficult to interpret. Based on these findings, one could argue that assembly dynamics are essential for Rca function, both in ATPase and in regulation of Rubisco carboxylation activity, thus providing a rational for Rca’s high degree of polydispersity.
ContributorsSerban, Andrew J (Author) / Wachter, Rebekka M. (Thesis advisor) / Levitus, Marcia (Thesis advisor) / Redding, Kevin E (Committee member) / Van Horn, Wade D (Committee member) / Arizona State University (Publisher)
Created2018
157221-Thumbnail Image.png
Description
DNA and RNA are generally regarded as one of the central molecules in molecular biology. Recent advancements in the field of DNA/RNA nanotechnology witnessed the success of usage of DNA/RNA as programmable molecules to construct nano-objects with predefined shapes and dynamic molecular machines for various functions. From the perspective of

DNA and RNA are generally regarded as one of the central molecules in molecular biology. Recent advancements in the field of DNA/RNA nanotechnology witnessed the success of usage of DNA/RNA as programmable molecules to construct nano-objects with predefined shapes and dynamic molecular machines for various functions. From the perspective of structural design with nucleic acid, there are basically two types of assembly method, DNA tile based assembly and DNA origami based assembly, used to construct infinite-sized crystal structures and finite-sized molecular structures. The assembled structure can be used for arrangement of other molecules or nanoparticles with the resolution of nanometers to create new type of materials. The dynamic nucleic acid machine is based on the DNA strand displacement, which allows two nucleic acid strands to hybridize with each other to displace one or more prehybridized strands in the process. Strand displacement reaction has been implemented to construct a variety of dynamic molecular systems, such as molecular computer, oscillators, in vivo devices for gene expression control.

This thesis will focus on the computational design of structural and dynamic nucleic acid systems, particularly for new type of DNA structure design and high precision control of gene expression in vivo. Firstly, a new type of fundamental DNA structural motif, the layered-crossover motif, will be introduced. The layered-crossover allow non-parallel alignment of DNA helices with precisely controlled angle. By using the layered-crossover motif, the scaffold can go through the 3D framework DNA origami structures. The properties of precise angle control of the layered-crossover tiles can also be used to assemble 2D and 3D crystals. One the dynamic control part, a de-novo-designed riboregulator is developed that can recognize single nucleotide variation. The riboregulators can also be used to develop paper-based diagnostic devices.
ContributorsHong, Fan, Ph. D (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Green, Alexander A. (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2019
134505-Thumbnail Image.png
Description
The current methods of drug delivery prove to have inefficiencies as far as drug administration to the target site. Due to adverse factors that the drug faces within the body, it can be broken down before the therapeutic can be applied. Polymeric micelles have shown promising results in the face

The current methods of drug delivery prove to have inefficiencies as far as drug administration to the target site. Due to adverse factors that the drug faces within the body, it can be broken down before the therapeutic can be applied. Polymeric micelles have shown promising results in the face of these circumstances, by being able to self-assemble into a core-shell structure to better house the medicine as it travels through blood stream upon intravenous injection. The triblock copolymer, PEG-PPG-PEG, uses it hydrophilic and hydrophobic components to form a spherical micelle at a nanoscale size allowing it cross barriers with greater ease and prolong dissociation. The resulting size of the micelle is measured by the use of a dynamic light scattering machine. Stability factors, such as, thermodynamic and kinetic stability, also aid in the formation of micelles, but are generally effected in drug delivery process by factors such as salt concentration and pH. Both these factors can cause a lack of stability resulting in aggregation of the micelles; therefore, their affects need to be prolonged in order to have sufficient drug delivery.
ContributorsNelson, Adriana Elisabeth (Author) / Green, Matthew (Thesis director) / Nannenga, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134963-Thumbnail Image.png
Description
Genetically encoded non-canonical amino acids (NCAAs) have allowed researchers to access functionalities that would be otherwise unavailable with the naturally-occurring amino acids. The metal-chelating NCAA (2,2'-bipyridin-5yl)alanine (Bpy-ala) has recently been employed, in tandem with computational modeling, to drive the assembly of a homotrimeric protein complex in the presence of a

Genetically encoded non-canonical amino acids (NCAAs) have allowed researchers to access functionalities that would be otherwise unavailable with the naturally-occurring amino acids. The metal-chelating NCAA (2,2'-bipyridin-5yl)alanine (Bpy-ala) has recently been employed, in tandem with computational modeling, to drive the assembly of a homotrimeric protein complex in the presence of a metal ion, specifically Fe(II). While a successful design was identified to form a homotrimeric complex with an iron-trisbipyridyl [Fe(Bpy-ala)3]2+ core when expressed in E. coli, its subsequent utility was marred by an excessively strong protein-protein interaction thus leading to a lack of metal-dependency. This thesis describes principles of protein design and characterization used to reduce the favorability of the apo protein complex in solution, resulting in the experimental verification of a mutant that undergoes facile, reversible complex assembly and disassembly in the presence or absence of Fe(II), respectively. The addition of other metal ions, such as Co(II) or Ni(II), yields products that show some level of assembly, although not with the same efficiency as Fe(II) addition, necessitating a better description of the energetics and kinetics of the system. Current studies are ongoing to examine the redox properties of the complex, as well as the kinetics of the metal-mediated self-assembly. Attempts to nucleate the trimer with Ru(II), forming a [Ru(Bpy)3]2+ complex with its interesting photophysical, photochemical, and photoredox properties, have not been met with substantial success, as coordination of the low-spin d6 metal ion often requires harsh conditions. However, due to the unique stability of the TRI_05 complexes, many approaches are available to this end, and experiments are underway to elucidate the proper conditions.
ContributorsAlmhjell, Patrick James (Author) / Mills, Jeremy H. (Thesis director) / Moore, Gary F. (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154412-Thumbnail Image.png
Description
Deoxyribonucleic acid (DNA) has emerged as an attractive building material for creating complex architectures at the nanometer scale that simultaneously affords versatility and modularity. Particularly, the programmability of DNA enables the assembly of basic building units into increasingly complex, arbitrary shapes or patterns. With the expanding complexity and functionality of

Deoxyribonucleic acid (DNA) has emerged as an attractive building material for creating complex architectures at the nanometer scale that simultaneously affords versatility and modularity. Particularly, the programmability of DNA enables the assembly of basic building units into increasingly complex, arbitrary shapes or patterns. With the expanding complexity and functionality of DNA toolboxes, a quantitative understanding of DNA self-assembly in terms of thermodynamics and kinetics, will provide researchers with more subtle design guidelines that facilitate more precise spatial and temporal control. This dissertation focuses on studying the physicochemical properties of DNA tile-based self-assembly process by recapitulating representative scenarios and intermediate states with unique assembly pathways.

First, DNA double-helical tiles with increasing flexibility were designed to investigate the dimerization kinetics. The higher dimerization rates of more rigid tiles result from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. Next, the thermodynamics and kinetics of single tile attachment to preformed “multitile” arrays were investigated to test the fundamental assumptions of tile assembly models. The results offer experimental evidences that double crossover tile attachment is determined by the electrostatic environment and the steric hindrance at the binding site. Finally, the assembly of double crossover tiles within a rhombic DNA origami frame was employed as the model system to investigate the competition between unseeded, facet and seeded nucleation. The results revealed that preference of nucleation types can be tuned by controlling the rate-limiting nucleation step.

The works presented in this dissertation will be helpful for refining the DNA tile assembly model for future designs and simulations. Moreover, The works presented here could also be helpful in understanding how individual molecules interact and more complex cooperative bindings in chemistry and biology. The future direction will focus on the characterization of tile assembly at single molecule level and the development of error-free tile assembly systems.
ContributorsJiang, Shuoxing (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Hayes, Mark (Committee member) / Wang, Xu (Committee member) / Arizona State University (Publisher)
Created2016