Matching Items (3)
Filtering by

Clear all filters

152900-Thumbnail Image.png
Description
Spatiotemporal processing in the mammalian olfactory bulb (OB), and its analog, the invertebrate antennal lobe (AL), is subject to plasticity driven by biogenic amines. I study plasticity using honey bees, which have been extensively studied with respect to nonassociative and associative based olfactory learning and memory. Octopamine (OA) release in

Spatiotemporal processing in the mammalian olfactory bulb (OB), and its analog, the invertebrate antennal lobe (AL), is subject to plasticity driven by biogenic amines. I study plasticity using honey bees, which have been extensively studied with respect to nonassociative and associative based olfactory learning and memory. Octopamine (OA) release in the AL is the functional analog to epinephrine in the OB. Blockade of OA receptors in the AL blocks plasticity induced changes in behavior. I have now begun to test specific hypotheses related to how this biogenic amine might be involved in plasticity in neural circuits within the AL. OA acts via different receptor subtypes, AmOA1, which gates calcium release from intracellular stores, and AmOA-beta, which results in an increase of cAMP. Calcium also enters AL interneurons via nicotinic acetylcholine receptors, which are driven by acetylcholine release from sensory neuron terminals, as well as through voltage-gated calcium channels. I employ 2-photon excitation (2PE) microscopy using fluorescent calcium indicators to investigate potential sources of plasticity as revealed by calcium fluctuations in AL projection neuron (PN) dendrites in vivo. PNs are analogous to mitral cells in the OB and have dendritic processes that show calcium increases in response to odor stimulation. These calcium signals frequently change after association of odor with appetitive reinforcement. However, it is unclear whether the reported plasticity in calcium signals are due to changes intrinsic to the PNs or to changes in other neural components of the network. My studies were aimed toward understanding the role of OA for establishing associative plasticity in the AL network. Accordingly, I developed a treatment that isolates intact, functioning PNs in vivo. A second study revealed that cAMP is a likely component of plasticity in the AL, thus implicating the AmOA-beta; receptors. Finally, I developed a method for loading calcium indicators into neural components of the AL that have yet to be studied in detail. These manipulations are now revealing the molecular mechanisms contributing to associative plasticity in the AL. These studies will allow for a greater understanding of plasticity in several neural components of the honey bee AL and mammalian OB.
ContributorsProtas, Danielle (Author) / Smith, Brian H. (Thesis advisor) / Neisewander, Janet (Committee member) / Anderson, Trent (Committee member) / Tyler, William (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2014
136060-Thumbnail Image.png
Description
ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of

ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of these odorants is made possible by the chemoreceptive functions of sensilla basiconica and sensilla trichoid which exist on the antennal structure. The present study consists of both a morphological analysis and electrophysiological experiment concerning sensilla basiconica. It attempts to characterize the function of neurons present in sensilla basiconica through single sensillum recordings and contributes to existing literature by determining if a social insect, such as the dampwood termite, is able to perceive a wide spectrum of odorants despite having significantly fewer olfactory receptors than most other social insect species. Results indicated that sensilla basiconica presence significantly out-paced that of sensilla trichoid and sensilla chaetica combined, on all flagellomeres. Analysis demonstrated significant responses to all general odorants and several cuticular hydrocarbons. Combined with the knowledge of fewer olfactory receptors present in this species and their lifestyle, results may indicate a positive association between the the social complexity of an insect's lifestyle and the number of ORs the individuals within that colony possess.
ContributorsMcGlone, Taylor (Author) / Liebig, Juergen (Thesis director) / Ghaninia, Majid (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
153202-Thumbnail Image.png
Description
Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 70-90% of all TBI cases, yet its neuropathophysiology is still poorly understood. While a single mTBI injury can lead to persistent deficits, repeat injuries

Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 70-90% of all TBI cases, yet its neuropathophysiology is still poorly understood. While a single mTBI injury can lead to persistent deficits, repeat injuries increase the severity and duration of both acute symptoms and long term deficits. In this study, to model pediatric repetitive mTBI (rmTBI) we subjected unrestrained juvenile animals (post-natal day 20) to repeat weight drop impact. Animals were anesthetized and subjected to sham or rmTBI once per day for 5 days. At 14 days post injury (PID), magnetic resonance imaging (MRI) revealed that rmTBI animals displayed marked cortical atrophy and ventriculomegaly. Specifically, the thickness of the cortex was reduced up to 46% beneath and the ventricles increased up to 970% beneath the impact zone. Immunostaining with the neuron specific marker NeuN revealed an overall loss of neurons within the motor cortex but no change in neuronal density. Examination of intrinsic and synaptic properties of layer II/III pyramidal neurons revealed no significant difference between sham and rmTBI animals at rest or under convulsant challenge with the potassium channel blocker, 4-Aminophyridine. Overall, our findings indicate that the neuropathological changes reported after pediatric rmTBI can be effectively modeled by repeat weight drop in juvenile animals. Developing a better understanding of how rmTBI alters the pediatric brain may help improve patient care and direct "return to game" decision making in adolescents.
ContributorsGoddeyne, Corey (Author) / Anderson, Trent (Thesis advisor) / Smith, Brian (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014