Matching Items (5)
Filtering by

Clear all filters

135845-Thumbnail Image.png
Description
This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography

This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography were utilized for post-impact analysis. MATLAB algorithms were written and refined for the localization and quantification of damage in plates using data from sensors such as piezoelectric and fiber Bragg gratings sensors. Throughout the thesis, the general plate theory and laminate plate theory, the operations and optimization of the gas gun, and the theory used for the damage localization algorithms will be discussed. Additional quantifiable results are to come in future semesters of experimentation, but this thesis outlines the framework upon which all the research will continue to advance.
ContributorsMccrea, John Patrick (Author) / Chattopadhyay, Aditi (Thesis director) / Borkowski, Luke (Committee member) / Department of Military Science (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136138-Thumbnail Image.png
Description
This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography

This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography were utilized for post-impact analysis. MATLAB algorithms were written and refined for the localization and quantification of damage in plates using data from sensors such as piezoelectric and fiber Bragg gratings sensors. Throughout the thesis, the general plate theory and laminate plate theory, the operations and optimization of the gas gun, and the theory used for the damage localization algorithms will be discussed. Additional quantifiable results are to come in future semesters of experimentation, but this thesis outlines the framework upon which all the research will continue to advance.
ContributorsMccrea, John Patrick (Author) / Chattopadhyay, Aditi (Thesis director) / Borkowski, Luke (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Military Science (Contributor)
Created2015-05
134460-Thumbnail Image.png
Description
Composite structures, particularly carbon-fiber reinforced polymers (CFRPs) have been subject to significant development in recent years. They have become increasingly reliable, durable, and versatile, finding a role in a wide variety of applications. When compared to conventional materials, CFRPs have several advantages, including extremely high strength, high in-plane and flexural

Composite structures, particularly carbon-fiber reinforced polymers (CFRPs) have been subject to significant development in recent years. They have become increasingly reliable, durable, and versatile, finding a role in a wide variety of applications. When compared to conventional materials, CFRPs have several advantages, including extremely high strength, high in-plane and flexural stiffness, and very low weight. However, the application of CFRPs and other fiber-matrix composites is complicated due to the manner in which damage propagates throughout the structure, and the associated difficulty in identifying and repairing such damages prior to structural failure. In this paper, a methods of detecting and localizing delaminations withint a complex foam-core composite structure using non-destructive evaluation (NDE) and structural health montoring (SHM) is investigated. The two NDE techniques utilized are flash thermography and low frequency ultrasonic C-Scan, which were used to confirm the location of seeded damages within the specimens and to quantify the size of the damages. Macro fiber composite sensors (MFCs) and piezoelectric sensors (PZTs) were used as actuators and sensors in pitch-catch and pulse-echo configurations in order to study mode conversions and wave reflections of the propagated Lamb waves when interacting with interply delaminations and foam-core separations. The final results indicated that the investigated NDE and SHM techniques are capable of detecting and quantifying damages within complex X-COR composites, with the SHM techniques having the potential to be used \textit{in situ} with a high degree of accuracy. It was also observed that the presence of the X-COR significantly alters the behavior of the wave when compared to a standard CFRP composite plate, making it necessary to account for any variations if wave-base techniques are to be used for damage detection and quantification. Lastly, a time-space model was created to model the wave interactions with damages located within X-COR complex sandwich composites.
Created2017-05
134890-Thumbnail Image.png
Description
This paper presents the methods used to fabricate carbon fiber tubes with different geometries that impact their critical failure modes. Two types of carbon fiber were used in the manufacturing process: seamless sleeve carbon fiber and stitched bonded sheet carbon fiber (PRI 2000-1-C). A manufacturing process for the tubes was

This paper presents the methods used to fabricate carbon fiber tubes with different geometries that impact their critical failure modes. Two types of carbon fiber were used in the manufacturing process: seamless sleeve carbon fiber and stitched bonded sheet carbon fiber (PRI 2000-1-C). A manufacturing process for the tubes was developed for both geometries. Different epoxy systems were used for each fiber type. After curing, the surfaces of the tubes were inspected using flash thermography to characterize surface defects. The tube samples were placed in a three-point bending setup with an induced crack. The crack propagation was documented using a digital image correlation system. The process for finding the shape factors and energy release rate are presented. The fracture behavior of the tubes is compared to the data from the compact tension samples to develop damage tolerant design guidelines for tube type structures. Plate samples were prepared to compare the capacity to the demand of the circular hollow section samples. With the results of this study, design guidelines for damage tolerant structures are developed, which can be applied to many industries such as aviation, alternative energy production, and construction. This is crucial to the longevity and safety of structures and systems that are used daily in society.
ContributorsPadilla, Michael David (Author) / Chattopadhyay, Aditi (Thesis director) / Yekani Fard, Masoud (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
A novel approach, the Invariant Based Theory of Composites and the "Trace" method it proposes, has the potential to reduce aerospace composite development times and costs by over 30% thus reinvigorating the development process and encouraging composite technology growth. The "trace" method takes advantage of inherent stiffness properties of laminates,

A novel approach, the Invariant Based Theory of Composites and the "Trace" method it proposes, has the potential to reduce aerospace composite development times and costs by over 30% thus reinvigorating the development process and encouraging composite technology growth. The "trace" method takes advantage of inherent stiffness properties of laminates, specifically carbon fiber, to make predictions of material properties used to derive design allowables. The advantages of the "trace" theory may not necessarily be specific to the aerospace industry, however many automotive manufacturers are facing environmental, social and political pressure to increase the gas mileage in their vehicles and reduce their carbon footprint. Therefore, the use of lighter materials, such as carbon fiber composites, to replace heavier metals in cars is inevitable yet as of now few auto manufacturers implement composites in their cars. The high material, testing and development costs, much like the aerospace industry, have been prohibitive to widespread use of these materials but progress is being made in overcoming those challenges. The "trace" method, while initially intended for quasi-isotropic, aerospace grade carbon-fiber laminates, still yields reasonable, and correctable, results for types of laminates as well such as with woven fabrics and thermoplastic matrices, much of which are being used in these early stages of automotive composite development. Despite the varying use of materials, the "trace" method could potentially boost automotive composites in a similar way to the aerospace industry by reducing testing time and costs and perhaps even playing a role in establishing emerging simulations of these materials.
ContributorsBrown, William Ross (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Krause, Stephen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05