Matching Items (3)
Filtering by

Clear all filters

156128-Thumbnail Image.png
Description
Polycrystalline magnetite thin films were deposited on large area polymer substrates using aqueous solution based spin-spray deposition (SSD). This technique involved the hydrolysis of precursor salt solutions at low temperatures (70-100°C). The fundamental mechanisms and pathways in crystallization and evolution of the film microstructures were studied as a function of

Polycrystalline magnetite thin films were deposited on large area polymer substrates using aqueous solution based spin-spray deposition (SSD). This technique involved the hydrolysis of precursor salt solutions at low temperatures (70-100°C). The fundamental mechanisms and pathways in crystallization and evolution of the film microstructures were studied as a function of reactant chemistry and reactor conditions (rotation rate, flow rates etc.). A key feature of this method was the ability to constantly supply fresh solutions throughout deposition. Solution flow due to substrate rotation ensured that reactant depleted solutions were spun off. This imparted a limited volume, near two-dimensional restriction on the growth process. Film microstructure was studied as a function of process parameters such as liquid flow rate, nebulizer configuration, platen rotation rate and solution chemistry. It was found that operating in the micro-droplet regime of deposition was a crucial factor in controlling the microstructure.

Film porosity and substrate adhesion were linked to the deposition rate, which in-turn depended on solution chemistry. Films exhibited a wide variety of hierarchically organized microstructures often spanning length scales from tens-of-nanometers to a few microns. These included anisotropic morphologies such as nanoplates and nanoblades, that were generally unexpected from magnetite (a high symmetry cubic solid). Time resolved studies showed that the reason for complex hierarchy in microstructure was the crystallization via non-classical pathways. SSD of magnetite films involved formation of precursor phases that subsequently underwent solid-state transformations and nanoparticle self-assembly. These precursor phases were identified and possible reaction mechanisms for the formation of magnetite were proposed. A qualitative description of the driving forces for self-assembly was presented.
ContributorsVadari Venkata, Kaushik Sridhar (Author) / Petuskey, William (Thesis advisor) / Carpenter, Ray (Committee member) / McCartney, Martha (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2018
137319-Thumbnail Image.png
Description
With the world's ever growing need for sustainable energy solutions, the field of thermoelectrics has seen rejuvenated interest. Specifically, modern advances in nanoscale technology have resulted in predictions that thermoelectric devices will soon become a viable waste heat recovery energy source, among other things. In order to achieve these predictions,

With the world's ever growing need for sustainable energy solutions, the field of thermoelectrics has seen rejuvenated interest. Specifically, modern advances in nanoscale technology have resulted in predictions that thermoelectric devices will soon become a viable waste heat recovery energy source, among other things. In order to achieve these predictions, however, key structure-property relationships must first be understood. Currently, the Thermal Energy and Nanomaterials Lab at Arizona State University is attempting to solve this problem. This project intends to aid the groups big picture goal by developing a robust and user friendly measurement platform which is capable of reporting charge carrier mobility, electrical conductivity, and Seebeck coefficient values. To date, the charge carrier mobility and electrical conductivity measurements have been successfully implemented and validated. First round analysis has been performed on β-In2Se3 thin film samples. Future work will feature a more comprehensive analysis of this material.
ContributorsNess, Kyle David (Author) / Wang, Robert (Thesis director) / Chan, Candace (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
154786-Thumbnail Image.png
Description
Lithium ion batteries have emerged as the most popular energy storage system, but they pose safety issues under extreme temperatures or in the event of a thermal runaway. Lithium ion batteries with inorganic separators offer the advantage of safer operation. An inorganic separator for lithium ion battery was prepared

Lithium ion batteries have emerged as the most popular energy storage system, but they pose safety issues under extreme temperatures or in the event of a thermal runaway. Lithium ion batteries with inorganic separators offer the advantage of safer operation. An inorganic separator for lithium ion battery was prepared by an improved method of blade coating α-Al2O3 slurry directly on the electrode followed by drying. The improved separator preparation involves a twice-coating process instead of coating the slurry all at once in order to obtain a thin (~40 µm) and uniform coat. It was also found that α-Al2O3 powder with particle size greater than the pore size in the electrode is preferable for obtaining a separator with 40 µm thickness and consistent cell performance. Unlike state-of-the-art polyolefin separators such as polypropylene (PP) which are selectively wettable with only certain electrolytes, the excellent electrolyte solvent wettability of α-Al2O3 allows the coated alumina separator to function with different electrolytes. The coated α-Al2O3 separator has a much higher resistance to temperature effects than its polyolefin counterparts, retaining its dimensional integrity at temperatures as high as 200ºC. This eliminates the possibility of a short circuit during thermal runaway. Lithium ion batteries assembled as half-cells and full cells with coated α-Al2O3 separator exhibit electrochemical performance comparable with that of polyolefin separators at room temperature. However, the cells with coated alumina separator shows better cycling performance under extreme temperatures in the temperature range of -30°C to 60°C. Therefore, the coated α-Al2O3 separator is very promising for application in safe lithium-ion batteries.
ContributorsSharma, Gaurav (Author) / Lin, Jerry Y.S. (Thesis advisor) / Chan, Candace (Committee member) / Kannan, Arunachala (Committee member) / Arizona State University (Publisher)
Created2016