Matching Items (2)
Filtering by

Clear all filters

Description
This creative thesis project aimed to create career development resources that School of Life Sciences majors could use to enhance their college experience, expand the breadth of relevant career options for School of Life Sciences majors, and confront and divert career problems through the implementation of these career development resources.

This creative thesis project aimed to create career development resources that School of Life Sciences majors could use to enhance their college experience, expand the breadth of relevant career options for School of Life Sciences majors, and confront and divert career problems through the implementation of these career development resources. Students encounter career problems when their intention and action diverge. These career problems may cause a student to stop their pursuit of a given career, change majors, or even stop schooling completely. It is the objective of this project to help resolve these career problems by introducing a career development resource flyer that educates the student about a given career, provides coursework to guide a student towards this career path, familiarize students with extracurricular efforts necessary for this position, propose valuable resources that the student can utilize to learn more about the career, and offer a question and answer portion for further career and professional understanding. In order to create these career development resource flyers a variety of professionals, both with and without relationships with Arizona State University were contacted and interviewed. The answers gathered from these interviews were then utilized to create the career flyers. The project was successful in creating five distinct career development resource flyers, as well as a blank template with instructions to be used in the future by the School of Life Sciences. The career development resource flyers will be utilized by the School of Life Sciences advising staff for future exploratory majors, but is not limited to just these students. Aspirations are set to create an expansive reservoir of these resources for future generations of students to access in hopes that they will be better suited to find a career path that they are passionate about and be better prepared to attain.
ContributorsGallegos, Darius Sloan (Author) / Wilson Sayres, Melissa (Thesis director) / Downing, Virginia (Committee member) / DeNardo, Dale (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
148229-Thumbnail Image.png
Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers, but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

ContributorsNumani, Asfia (Co-author) / Mishra, Shambhavi (Co-author) / Sweazea, Karen (Thesis director) / Plasencia, Jon (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05