Matching Items (3)
Filtering by

Clear all filters

137319-Thumbnail Image.png
Description
With the world's ever growing need for sustainable energy solutions, the field of thermoelectrics has seen rejuvenated interest. Specifically, modern advances in nanoscale technology have resulted in predictions that thermoelectric devices will soon become a viable waste heat recovery energy source, among other things. In order to achieve these predictions,

With the world's ever growing need for sustainable energy solutions, the field of thermoelectrics has seen rejuvenated interest. Specifically, modern advances in nanoscale technology have resulted in predictions that thermoelectric devices will soon become a viable waste heat recovery energy source, among other things. In order to achieve these predictions, however, key structure-property relationships must first be understood. Currently, the Thermal Energy and Nanomaterials Lab at Arizona State University is attempting to solve this problem. This project intends to aid the groups big picture goal by developing a robust and user friendly measurement platform which is capable of reporting charge carrier mobility, electrical conductivity, and Seebeck coefficient values. To date, the charge carrier mobility and electrical conductivity measurements have been successfully implemented and validated. First round analysis has been performed on β-In2Se3 thin film samples. Future work will feature a more comprehensive analysis of this material.
ContributorsNess, Kyle David (Author) / Wang, Robert (Thesis director) / Chan, Candace (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136915-Thumbnail Image.png
Description
The purpose of this thesis was to investigate the properties of amorphous and crystalline NaTaO3 to determine what makes amorphous NaTaO3 a suitable photocatalyst for water splitting applications. Amorphous and nanocrystalline NaTaO3 were synthesized and characterized using X-Ray Diffraction (XRD), Raman Spectroscopy, and Fourier Transform Infrared Spectroscopy (FT-IR). The photocatalytic

The purpose of this thesis was to investigate the properties of amorphous and crystalline NaTaO3 to determine what makes amorphous NaTaO3 a suitable photocatalyst for water splitting applications. Amorphous and nanocrystalline NaTaO3 were synthesized and characterized using X-Ray Diffraction (XRD), Raman Spectroscopy, and Fourier Transform Infrared Spectroscopy (FT-IR). The photocatalytic activity of the materials was analyzed using methylene blue degradation as an indicator of photocatalytic activity. The amorphous material showed significant photocatalytic activity in methylene blue degradation experiments, removing 100% of a 0.1 mmol methylene blue solution in 20 minutes, compared to the monoclinic crystalline NaTaO3, which showed negligible photocatalytic activity. Additional electrochemical characterization studies were carried out with methyl viologen (MV2+) to determine the band structure of the materials. Performing these synthesis and characterization has provided insight into further investigation of amorphous NaTaO3 and what makes the material an effective and inexpensive photocatalyst.
ContributorsRorrer, Julie Elaine (Author) / Chan, Candace (Thesis director) / Bertoni, Mariana (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
154257-Thumbnail Image.png
Description
Photocatalytic water splitting is a promising technique to produce H2 fuels from water using sustainable solar energy. To better design photocatalysts, the understanding of charge transfer at surfaces/interfaces and the corresponding structure change during the reaction is very important. Local structural and chemical information on nanoparticle surfaces or interfaces can

Photocatalytic water splitting is a promising technique to produce H2 fuels from water using sustainable solar energy. To better design photocatalysts, the understanding of charge transfer at surfaces/interfaces and the corresponding structure change during the reaction is very important. Local structural and chemical information on nanoparticle surfaces or interfaces can be achieved through characterizations on transmission electron microscopy (TEM). Emphasis should be put on materials structure changes during the reactions in their “working conditions”. Environmental TEM with in situ light illumination system allows the photocatalysts to be studied under light irradiation when exposed to H2O vapor. A set of ex situ and in situ TEM characterizations are carried out on typical types of TiO2 based photocatalysts. The observed structure changes during the reaction are correlated with the H2 production rate for structure-property relationships.

A surface disordering was observed in situ when well-defined anatase TiO2 rhombohedral nanoparticles were exposed to 1 Torr H2O vapor and 10suns light inside the environmental TEM. The disordering is believed to be related to high density of hydroxyl groups formed on surface oxygen vacancies during water splitting reactions.

Pt co-catalyst on TiO2 is able to split pure water producing H2 and O2. The H2 production rate drops during the reaction. Particle size growth during reaction was discovered with Z-contrast images. The particle size growth is believed to be a photo-electro-chemical Ostwald ripening.

Characterizations were also carried out on a more complicated photocatalyst system: Ni/NiO core/shell co-catalyst on TiO2. A decrease of the H2 production rate resulting from photo-corrosion was observed. The Ni is believed to be oxidized to Ni2+ by OH• radicals which are intermediate products of H2O oxidation. The mechanism that the OH• radicals leak into the cores through cracks on NiO shells is more supported by experiments.

Overall this research has done a comprehensive ex situ and in situ TEM characterizations following some typical TiO2 based photocatalysts during reactions. This research has shown the technique availability to study photocatalyst inside TEM in photocatalytic conditions. It also demonstrates the importance to follow structure changes of materials during reactions in understanding deactivation mechanisms.
ContributorsZhang, Liuxian (Author) / Crozier, Peter (Thesis advisor) / Smith, David (Committee member) / Chan, Candace (Committee member) / Liu, Jingyue (Committee member) / Arizona State University (Publisher)
Created2015