Matching Items (3)
Filtering by

Clear all filters

153028-Thumbnail Image.png
Description
This dissertation presents my work on development of deformable electronics using microelectromechanical systems (MEMS) based fabrication technologies. In recent years, deformable electronics are coming to revolutionize the functionality of microelectronics seamlessly with their application environment, ranging from various consumer electronics to bio-medical applications. Many researchers have studied this area, and

This dissertation presents my work on development of deformable electronics using microelectromechanical systems (MEMS) based fabrication technologies. In recent years, deformable electronics are coming to revolutionize the functionality of microelectronics seamlessly with their application environment, ranging from various consumer electronics to bio-medical applications. Many researchers have studied this area, and a wide variety of devices have been fabricated. One traditional way is to directly fabricate electronic devices on flexible substrate through low-temperature processes. These devices suffered from constrained functionality due to the temperature limit. Another transfer printing approach has been developed recently. The general idea is to fabricate functional devices on hard and planar substrates using standard processes then transferred by elastomeric stamps and printed on desired flexible and stretchable substrates. The main disadvantages are that the transfer printing step may limit the yield. The third method is "flexible skins" which silicon substrates are thinned down and structured into islands and sandwiched by two layers of polymer. The main advantage of this method is post CMOS compatible. Based on this technology, we successfully fabricated a 3-D flexible thermal sensor for intravascular flow monitoring. The final product of the 3-D sensor has three independent sensing elements equally distributed around the wall of catheter (1.2 mm in diameter) with 120° spacing. This structure introduces three independent information channels, and cross-comparisons among all readings were utilized to eliminate experimental error and provide better measurement results. The novel fabrication and assembly technology can also be applied to other catheter based biomedical devices. A step forward inspired by the ancient art of folding, origami, which creating three-dimensional (3-D) structures from two-dimensional (2-D) sheets through a high degree of folding along the creases. Based on this idea, we developed a novel method to enable better deformability. One example is origami-enabled silicon solar cells. The solar panel can reach up to 644% areal compactness while maintain reasonable good performance (less than 30% output power density drop) upon 40 times cyclic folding/unfolding. This approach can be readily applied to other functional devices, ranging from sensors, displays, antenna, to energy storage devices.
ContributorsTang, Rui (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Pan, George (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2014
153272-Thumbnail Image.png
Description
Hydrogen sulfide (H2S) has been identified as a potential ingredient for grain boundary passivation of multicrystalline silicon. Sulfur is already established as a good surface passivation material for crystalline silicon (c-Si). Sulfur can be used both from solution and hydrogen sulfide gas. For multicrystalline silicon (mc-Si) solar cells, increasing efficiency

Hydrogen sulfide (H2S) has been identified as a potential ingredient for grain boundary passivation of multicrystalline silicon. Sulfur is already established as a good surface passivation material for crystalline silicon (c-Si). Sulfur can be used both from solution and hydrogen sulfide gas. For multicrystalline silicon (mc-Si) solar cells, increasing efficiency is a major challenge because passivation of mc-Si wafers is more difficult due to its randomly orientated crystal grains and the principal source of recombination is contributed by the defects in the bulk of the wafer and surface.

In this work, a new technique for grain boundary passivation for multicrystalline silicon using hydrogen sulfide has been developed which is accompanied by a compatible Aluminum oxide (Al2O3) surface passivation. Minority carrier lifetime measurement of the passivated samples has been performed and the analysis shows that success has been achieved in terms of passivation and compared to already existing hydrogen passivation, hydrogen sulfide passivation is actually better. Also the surface passivation by Al2O3 helps to increase the lifetime even more after post-annealing and this helps to attain stability for the bulk passivated samples. Minority carrier lifetime is directly related to the internal quantum efficiency of solar cells. Incorporation of this technique in making mc-Si solar cells is supposed to result in higher efficiency cells. Additional research is required in this field for the use of this technique in commercial solar cells.
ContributorsSaha, Arunodoy, Ph.D (Author) / Tao, Meng (Thesis advisor) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2014
154556-Thumbnail Image.png
Description
To date, the most popular and dominant material for commercial solar cells is

crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out

of all commercial solar cells. Although the potential of crystalline-Si solar cells in

supplying energy demands is enormous, their future growth will likely be constrained

by two

To date, the most popular and dominant material for commercial solar cells is

crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out

of all commercial solar cells. Although the potential of crystalline-Si solar cells in

supplying energy demands is enormous, their future growth will likely be constrained

by two major bottlenecks. The first is the high electricity input to produce

crystalline-Si solar cells and modules, and the second is the limited supply of silver

(Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching

terawatt-scale deployment, which means the electricity produced by crystalline-Si

solar cells would never fulfill a noticeable portion of our energy demands in the future.

In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al)

electroplating has been developed as an alternative metallization technique in the

fabrication of crystalline-Si solar cells. The plating is carried out in a

near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been

found that dense, adherent Al deposits with resistivity in the high 10^–6 ohm-cm range

can be reproducibly obtained directly on Si substrates and nickel seed layers. An

all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al

back electrode, has been successfully demonstrated based on commercial p-type

monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further

optimization of the cell fabrication process, in particular a suitable patterning

technique for the front silicon nitride layer, is expected to increase the efficiency of

the cell to ~18%. This shows the potential of Al electroplating in cell metallization is

promising and replacing Ag with Al as the front finger electrode is feasible.
ContributorsSun, Wen-Cheng (Author) / Tao, Meng (Thesis advisor) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2016