Matching Items (11)
Filtering by

Clear all filters

151827-Thumbnail Image.png
Description
The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the

The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the power plant through visual inspection, electrical performance, and infrared thermography. The purpose of this evaluation was to measure and understand the extent of degradation to the system along with the identification of the failure modes in this hot-dry climatic condition. This 4000 module bipolar system was originally installed with a 200 kW DC output of PV array (17 degree fixed tilt) and an AC output of 175 kVA. The system was shown to degrade approximately at a rate of 2.3% per year with no apparent potential induced degradation (PID) effect. The power plant is made of two arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the north array and the other thesis presents the results obtained on the south array. The resulting study showed that PV module design, array configuration, vandalism, installation methods and Arizona environmental conditions have had an effect on this system's longevity and reliability. Ultimately, encapsulation browning, higher series resistance (potentially due to solder bond fatigue) and non-cell interconnect ribbon breakages outside the modules were determined to be the primary causes for the power loss.
ContributorsBelmont, Jonathan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Henderson, Mark (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
152518-Thumbnail Image.png
Description
In the interest of expediting future pilot line start-ups for solar cell research, the development of Arizona State University's student-led pilot line at the Solar Power Laboratory is discussed extensively within this work. Several experiments and characterization techniques used to formulate and optimize a series of processes for fabricating diffused-junction,

In the interest of expediting future pilot line start-ups for solar cell research, the development of Arizona State University's student-led pilot line at the Solar Power Laboratory is discussed extensively within this work. Several experiments and characterization techniques used to formulate and optimize a series of processes for fabricating diffused-junction, screen-printed silicon solar cells are expounded upon. An experiment is conducted in which the thickness of a PECVD deposited anti-reflection coating (ARC) is varied across several samples and modeled as a function of deposition time. Using this statistical model in tandem with reflectance measurements for each sample, the ARC thickness is optimized to increase light trapping in the solar cells. A response surface model (RSM) experiment is conducted in which 3 process parameters are varied on the PECVD tool for the deposition of the ARCs on several samples. A contactless photoconductance decay (PCD) tool is used to measure the dark saturation currents of these samples. A statistical analysis is performed using JMP in which optimum deposition parameters are found. A separate experiment shows an increase in the passivation quality of the a-SiNx:H ARCs deposited on the solar cells made on the line using these optimum parameters. A RSM experiment is used to optimize the printing process for a particular silver paste in a similar fashion, the results of which are confirmed by analyzing the series resistance of subsequent cells fabricated on the line. An in-depth explanation of a more advanced analysis using JMP and PCD measurements on the passivation quality of 3 aluminum back-surface fields (BSF) is given. From this experiment, a comparison of the means is conducted in order to choose the most effective BSF paste for cells fabricated on the line. An experiment is conducted in parallel which confirms the results via Voc measurements. It is shown that in a period of 11 months, the pilot line went from producing a top cell efficiency of 11.5% to 17.6%. Many of these methods used for the development of this pilot line are equally applicable to other cell structures, and can easily be applied to other solar cell pilot lines.
ContributorsPickett, Guy (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2014
151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152632-Thumbnail Image.png
Description
Silicon (Si) solar cells are the dominant technology used in the Photovoltaics industry. Field-effect passivation by means of electrostatic charges stored in an overlying insulator on a silicon solar cell has been proven to be a significantly efficient way to reduce effective surface recombination velocity and increase minority carrier lifetime.

Silicon (Si) solar cells are the dominant technology used in the Photovoltaics industry. Field-effect passivation by means of electrostatic charges stored in an overlying insulator on a silicon solar cell has been proven to be a significantly efficient way to reduce effective surface recombination velocity and increase minority carrier lifetime. Silicon nitride (SiNx) films have been extensively used as passivation layers. The capability to store charges makes SiNx a promising material for excellent feild effect passivation. In this work, symmetrical Si/SiO2/SiNx stacks are developed to study the effect of charges in SiNx films. SiO2 films work as barrier layers. Corona charging technique showed the ability to inject charges into the SiNx films in a short time. Minority carrier lifetimes of the Czochralski (CZ) Si wafers increased significantly after either positive or negative charging. A fast and contactless method to characterize the charged overlying insulators on Si wafer through lifetime measurements is proposed and studied in this work, to overcome the drawbacks of capacitance-voltage (CV) measurements such as time consuming, induction of contanmination and hysteresis effect, etc. Analytical simulations showed behaviors of inverse lifetime (Auger corrected) vs. minority carrier density curves depend on insulator charge densities (Nf). From the curve behavior, the Si surface condition and region of Nf can be estimated. When the silicon surface is at high strong inversion or high accumulation, insulator charge density (Nf) or surface recombination velocity parameters (Sn0 and Sp0) can be determined from the slope of inverse lifetime curves, if the other variable is known. If Sn0 and Sp0 are unknown, Nf values of different samples can be compared as long as all have similar Sn0 and Sp0 values. Using the saturation current density (J0) and intercept fit extracted from the lifetime measurement, the bulk lifetime can be calculated. Therefore, this method is feasible and promising for charged insulator characterization.
ContributorsYang, Qun (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2014
152947-Thumbnail Image.png
Description
Crystalline silicon has a relatively low absorption coefficient, and therefore, in thin silicon solar cells surface texturization plays a vital role in enhancing light absorption. Texturization is needed to increase the path length of light through the active absorbing layer. The most popular choice for surface texturization of crystalline silicon

Crystalline silicon has a relatively low absorption coefficient, and therefore, in thin silicon solar cells surface texturization plays a vital role in enhancing light absorption. Texturization is needed to increase the path length of light through the active absorbing layer. The most popular choice for surface texturization of crystalline silicon is the anisotropic wet-etching that yields pyramid-like structures. These structures have shown to be both simple to fabricate and efficient in increasing the path length; they outperform most competing surface texture. Recent studies have also shown these pyramid-like structures are not truly square-based 54.7 degree pyramids but have variable base angles and shapes. In addition, their distribution is not regular -- as is often assumed in optical models -- but random. For accurate prediction of performance of silicon solar cells, it is important to investigate the true nature of the surface texture that is achieved using anisotropic wet-etching, and its impact on light trapping. We have used atomic force microscopy (AFM) to characterize the surface topology by obtaining actual height maps that serve as input to ray tracing software. The height map also yields the base angle distribution, which is compared to the base angle distribution obtained by analyzing the angular reflectance distribution measured by spectrophotometer to validate the shape of the structures. Further validation of the measured AFM maps is done by performing pyramid density comparison with SEM micrograph of the texture. Last method employed for validation is Focused Ion Beam (FIB) that is used to mill the long section of pyramids to reveal their profile and so from that the base angle distribution is measured. After that the measured map is modified and the maps are generated keeping the positional randomness (the positions of pyramids) and height of the pyramids the same, but changing their base angles. In the end a ray tracing software is used to compare the actual measured AFM map and also the modified maps using their reflectance, transmittance, angular scattering and most importantly path length enhancement, absorbance and short circuit current with lambertian scatterer.
ContributorsManzoor, Salman (Author) / Holman, Zachary (Thesis advisor) / Goodnick, Stephen (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2014
153272-Thumbnail Image.png
Description
Hydrogen sulfide (H2S) has been identified as a potential ingredient for grain boundary passivation of multicrystalline silicon. Sulfur is already established as a good surface passivation material for crystalline silicon (c-Si). Sulfur can be used both from solution and hydrogen sulfide gas. For multicrystalline silicon (mc-Si) solar cells, increasing efficiency

Hydrogen sulfide (H2S) has been identified as a potential ingredient for grain boundary passivation of multicrystalline silicon. Sulfur is already established as a good surface passivation material for crystalline silicon (c-Si). Sulfur can be used both from solution and hydrogen sulfide gas. For multicrystalline silicon (mc-Si) solar cells, increasing efficiency is a major challenge because passivation of mc-Si wafers is more difficult due to its randomly orientated crystal grains and the principal source of recombination is contributed by the defects in the bulk of the wafer and surface.

In this work, a new technique for grain boundary passivation for multicrystalline silicon using hydrogen sulfide has been developed which is accompanied by a compatible Aluminum oxide (Al2O3) surface passivation. Minority carrier lifetime measurement of the passivated samples has been performed and the analysis shows that success has been achieved in terms of passivation and compared to already existing hydrogen passivation, hydrogen sulfide passivation is actually better. Also the surface passivation by Al2O3 helps to increase the lifetime even more after post-annealing and this helps to attain stability for the bulk passivated samples. Minority carrier lifetime is directly related to the internal quantum efficiency of solar cells. Incorporation of this technique in making mc-Si solar cells is supposed to result in higher efficiency cells. Additional research is required in this field for the use of this technique in commercial solar cells.
ContributorsSaha, Arunodoy, Ph.D (Author) / Tao, Meng (Thesis advisor) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2014
151246-Thumbnail Image.png
Description
Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly

Class D Amplifiers are widely used in portable systems such as mobile phones to achieve high efficiency. The demands of portable electronics for low power consumption to extend battery life and reduce heat dissipation mandate efficient, high-performance audio amplifiers. The high efficiency of Class D amplifiers (CDAs) makes them particularly attractive for portable applications. The Digital class D amplifier is an interesting solution to increase the efficiency of embedded systems. However, this solution is not good enough in terms of PWM stage linearity and power supply rejection. An efficient control is needed to correct the error sources in order to get a high fidelity sound quality in the whole audio range of frequencies. A fundamental analysis on various error sources due to non idealities in the power stage have been discussed here with key focus on Power supply perturbations driving the Power stage of a Class D Audio Amplifier. Two types of closed loop Digital Class D architecture for PSRR improvement have been proposed and modeled. Double sided uniform sampling modulation has been used. One of the architecture uses feedback around the power stage and the second architecture uses feedback into digital domain. Simulation & experimental results confirm that the closed loop PSRR & PS-IMD improve by around 30-40 dB and 25 dB respectively.
ContributorsChakraborty, Bijeta (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2012
154196-Thumbnail Image.png
Description
In order to ensure higher penetration of photovoltaics in the energy market and have an immediate impact in addressing the challenges of energy crisis and climate change, this thesis research focusses on improving the efficiency of the diffused junction silicon solar cells of an already existing line with established processes.

In order to ensure higher penetration of photovoltaics in the energy market and have an immediate impact in addressing the challenges of energy crisis and climate change, this thesis research focusses on improving the efficiency of the diffused junction silicon solar cells of an already existing line with established processes. Thus, the baseline processes are first made stable and demonstrated as a pilot line at the Solar Power Lab at ASU, to be used as a backbone on which further improvements could be made. Of the several factors that affect the solar cell efficiency, improvement of short circuit current by reduction of the shading losses is chosen to achieve the improvement.

The shading losses are reduced by lowering the finger width of the solar cell .This reduction of the front metal coverage causes an increase in the series resistance, thereby adversely affecting the fill factor and hence efficiency. To overcome this problem, double printing method is explored to be used for front grid metallization. Before its implementation, it is important to accurately understand the effect of reducing the finger width on the series resistance. Hence, series resistance models are modified from the existing generic model and developed to capture the effects of screen-printing. To have minimum power loss in the solar cell, finger spacing is optimized for the front grid design with each of the finger widths chosen, which are narrower than the baseline finger width. A commercial software package called Griddler is used to predict the results of the model developed to capture effects of screen-printing.

The process for double printing with accurate alignment for finger width down to 50um is developed. After designing the screens for optimized front grid, solar cells are fabricated using both single printing and double printing methods and an improvement of efficiency from 17.2% to 17.8%, with peak efficiency of 18% is demonstrated.
ContributorsSrinivasa, Apoorva (Author) / Bowden, Stuart (Thesis advisor) / Tracy, Clarence (Committee member) / Dauksher, Bill (Committee member) / Arizona State University (Publisher)
Created2015
154094-Thumbnail Image.png
Description
In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress

In this thesis, a digital input class D audio amplifier system which has the ability

to reject the power supply noise and nonlinearly of the output stage is presented. The main digital class D feed-forward path is using the fully-digital sigma-delta PWM open loop topology. Feedback loop is used to suppress the power supply noise and harmonic distortions. The design is using global foundry 0.18um technology.

Based on simulation, the power supply rejection at 200Hz is about -49dB with

81dB dynamic range and -70dB THD+N. The full scale output power can reach as high as 27mW and still keep minimum -68dB THD+N. The system efficiency at full scale is about 82%.
ContributorsBai, Jing (Author) / Bakkaloglu, Bertan (Thesis advisor) / Arizona State University (Publisher)
Created2015
154720-Thumbnail Image.png
Description
A basic theory and terminology that comprehensively applies to all different types

of contacts in silicon solar cells has, thus far, been elusive. While the well established diode model has been applied to many of the complex contacts, the theory is not adequate to intuitively describe the characteristics of novel contacts.

A basic theory and terminology that comprehensively applies to all different types

of contacts in silicon solar cells has, thus far, been elusive. While the well established diode model has been applied to many of the complex contacts, the theory is not adequate to intuitively describe the characteristics of novel contacts. This thesis shows that the many desirable characteristics of contacts that are discussed in the literature—carrier selectivity, passivation, and low majority carrier conductance, key among them—originate from the resistance to electrons and holes in the contact. These principles are applied to describe a few popular contact technologies in order to pave the path to envisioning novel contacts. Metrics for contact performance is introduced to quantify each of the above characteristics using the two carrier resistances. The the validity of the proposed metrics is explored using extensive PC-1D simulations.
ContributorsKoswatta, Priyaranga L (Author) / Holman, Zachary C (Thesis advisor) / King, Richard (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2016