Matching Items (1)
Filtering by

Clear all filters

161952-Thumbnail Image.png
Description
This work focuses on qualifying the performance of an optoelectrical measurement system designed to analyze ribonucleic acid (RNA) within a micro sample. The system is capable of measuring light intensity converted to voltage versus time and is a fast, inexpensive, and portable method for rapid detection of biologics such as

This work focuses on qualifying the performance of an optoelectrical measurement system designed to analyze ribonucleic acid (RNA) within a micro sample. The system is capable of measuring light intensity converted to voltage versus time and is a fast, inexpensive, and portable method for rapid detection of biologics such as SARS-CoV-2 virus, or Covid-19 disease. The measurement system consists of a microfluidic chip and a point of care fluorescent reader.The intent of this research is to measure consistency and robustness of the fluorescent reader combined with the microfluidic chip. The consistency and the robustness of the fluorescent reader within the duty cycle of the system power and the measurement system were analyzed with Six Sigma methods. Control charts, analysis of variance (ANOVAs), and variance components calculations were implemented to characterize the reader system. Through the process of this analysis, baseline characteristics were measured and documented providing valuable data for the improved instrument design. The existing microfluidic chip is a prototype that works in combination with the reader based on fluorescent detection. Baseline studies were required to define any issues related to microfluidic autofluorescence. Multiple designs were tested to measure reduction in autofluorescence in the microfluidics. It was found that certain designs performed better than others. One approach for improvement in the microfluidic chip may be achieved by characterizing and source controlling materials, optimizing layers, mask apertures, and mask orientations to determine reliability in the measurable output through the fluorescent reader. Since the reader and the microfluidic are designed to work together, any future studies should explore testing where the two components are considered a coupled system.
ContributorsShabtai, Bat-El (Author) / Blain Christen, Jennifer (Thesis advisor) / Abbas, James (Thesis advisor) / Maass, Eric (Committee member) / Beeman, Scott (Committee member) / Arizona State University (Publisher)
Created2021