Matching Items (393)
ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
ContributorsBolari, John (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-04
ContributorsOftedahl, Paul (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-29
Description
Measles and mumps are highly contagious, vaccine-preventable diseases with cases continuing to persist in high two-dose vaccinated populations. Recent outbreaks on university and college campuses across the United States prompt a need for further understanding of the immunity levels afforded by the MMR vaccine which has significantly decreased incidence rates

Measles and mumps are highly contagious, vaccine-preventable diseases with cases continuing to persist in high two-dose vaccinated populations. Recent outbreaks on university and college campuses across the United States prompt a need for further understanding of the immunity levels afforded by the MMR vaccine which has significantly decreased incidence rates of measles and mumps since it was introduced.
Current methods for IgG antibody detection include enzyme immunoassays (EIA) such as the commercially available Diamedix Immunosimplicity® Measles IgG test kit and the Diamedix Immunosimplicity® Mumps IgG test kit. EIAs generally provide high sensitivity and strong specificity, however, there is a need for rapid screening of measles and mumps specific immunity in outbreak and resource-limited areas which could be solved by use a point-of-care (POC) platform.
This study aims to optimize a point-of-care device for the multiplexed detection of MeV, MuV, and RuV IgG antibodies in sera and to compare the sensitivity to commercial enzyme immunoassays. The IgG antibody levels to MeV and MuV were measured using EIA test kits for a total of 44 healthy serum samples. Of the samples, 6% were seronegative for MeV-specific IgG antibodies and 75% were seronegative for MuV-specific antibodies, showing low correlation of IgG antibody levels between both viruses.
To improve the sensitivity of the POC device, multiple conjugated fluorescent secondary antibodies were tested with different surface chemistries. Signal detection was measured using the pre-developed four-site slide reader. Preliminary data show that Nile Red microspheres provide robust signal detection and should be the secondary antibody of choice when sera are tested for IgG antibodies using the POC platform in future work.
ContributorsBharaj, Tirinder K. (Author) / Anderson, Karen (Thesis director) / Green, Alexander (Committee member) / Ewaisha, Radwa (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
ContributorsMarshall, Kimberly (Performer) / Meszler, Alexander (Performer) / Yatso, Toby (Narrator) / ASU Library. Music Library (Publisher)
Created2018-09-16
154884-Thumbnail Image.png
Description
Measles is a contagious, vaccine-preventable disease that continues to be the leading

cause of death in children younger than the age of 5 years. While the introduction of the Measles, Mumps, and Rubella vaccine (MMR) has significantly decreased morbidity and mortality rates worldwide, vaccine coverage is highly variable across global regions.

Measles is a contagious, vaccine-preventable disease that continues to be the leading

cause of death in children younger than the age of 5 years. While the introduction of the Measles, Mumps, and Rubella vaccine (MMR) has significantly decreased morbidity and mortality rates worldwide, vaccine coverage is highly variable across global regions. Current diagnostic methods rely on enzyme immunoassays (EIA) to detect IgM or IgG Abs in serum. Commercially available Diamedix Immunosimplicity® Measles IgG test kit has been shown to have 91.1% sensitivity and 93.8% specificity, with a positive predictive value of 88.7% and a negative predictive value of 90.9% on the basis of a PRN titer of 120. There is an increasing need for rapid screening for measles specific immunity in outbreak settings. This study aims to develop a rapid molecular diagnostic assay to detect IgG reactive to three individual measles virus (MeV) proteins.

Measles virus (MeV) genes were subcloned into the pJFT7_nGST vector to generate N- terminal GST fusion proteins. Single MeV cistrons were expressed using in vitro transcription/translation (IVTT) with human cell lysate. Expression of GST-tagged proteins was measured with mouse anti-GST mAb and sheep anti-mouse IgG. Relative light units (RLUs) as luminescence was measured. Antibodies to MeV antigens were measured in 40 serum samples from healthy subjects.

Protein expression of three MeV genes of interest was measured in comparison with vector control and statistical significance was determined using the Student’s t-test (p<0.05). N expressed at the highest level with an average RLU value of 3.01 x 109 (p<0.001) and all proteins were expressed at least 50% greater than vector control (4.56 x 106 RLU). 36/40 serum samples had IgG to N (Ag:GST ratio>1.21), F (Ag:GST ratio>1.92), or H (Ag:GST ratio> 1.23).

These data indicate that the in vitro expression of MeV antigens, N, F, and H, were markedly improved by subcloning into pJFT7_nGST vector to generate N-terminal GST fusion proteins. The expression of single MeV genes N, F and H, are suitable antigens for serologic capture analysis of measles-specific antibodies. These preliminary data can be used to design a more intensive study to explore the possibilities of using these MeV antigens as a diagnostic marker.
ContributorsMushtaq, Zuena (Author) / Anderson, Karen (Thesis advisor) / Blattman, Joseph (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2016
ContributorsTaylor, Karen Stephens (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-21
ContributorsCramer, Craig (Performer) / ASU Library. Music Library (Publisher)
Created1997-02-16
ContributorsMarshall, Kimberly (Performer) / ASU Library. Music Library (Publisher)
Created2019-03-17
ContributorsCampbell, Jeffrey (Performer) / ASU Library. Music Library (Publisher)
Created2005-10-23