Matching Items (6)
Filtering by

Clear all filters

152010-Thumbnail Image.png
Description
Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary

Micro Electro Mechanical Systems (MEMS) is one of the fastest growing field in silicon industry. Low cost production is key for any company to improve their market share. MEMS testing is challenging since input to test a MEMS device require physical stimulus like acceleration, pressure etc. Also, MEMS device vary with process and requires calibration to make them reliable. This increases test cost and testing time. This challenge can be overcome by combining electrical stimulus based testing along with statistical analysis on MEMS response for electrical stimulus and also limited physical stimulus response data. This thesis proposes electrical stimulus based built in self test(BIST) which can be used to get MEMS data and later this data can be used for statistical analysis. A capacitive MEMS accelerometer is considered to test this BIST approach. This BIST circuit overhead is less and utilizes most of the standard readout circuit. This thesis discusses accelerometer response for electrical stimulus and BIST architecture. As a part of this BIST circuit, a second order sigma delta modulator has been designed. This modulator has a sampling frequency of 1MHz and bandwidth of 6KHz. SNDR of 60dB is achieved with 1Vpp differential input signal and 3.3V supply
ContributorsKundur, Vinay (Author) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152409-Thumbnail Image.png
Description
The applications which use MEMS accelerometer have been on rise and many new fields which are using the MEMS devices have been on rise. The industry is trying to reduce the cost of production of these MEMS devices. These devices are manufactured using micromachining and the interface circuitry is manufactured

The applications which use MEMS accelerometer have been on rise and many new fields which are using the MEMS devices have been on rise. The industry is trying to reduce the cost of production of these MEMS devices. These devices are manufactured using micromachining and the interface circuitry is manufactured using CMOS and the final product is integrated on to a single chip. Amount spent on testing of the MEMS devices make up a considerable share of the total final cost of the device. In order to save the cost and time spent on testing, researchers have been trying to develop different methodologies. At present, MEMS devices are tested using mechanical stimuli to measure the device parameters and for calibration the device. This testing is necessary since the MEMS process is not a very well controlled process unlike CMOS. This is done using an ATE and the cost of using ATE (automatic testing equipment) contribute to 30-40% of the devices final cost. This thesis proposes an architecture which can use an Electrical Signal to stimulate the MEMS device and use the data from the MEMS response in approximating the calibration coefficients efficiently. As a proof of concept, we have designed a BIST (Built-in self-test) circuit for MEMS accelerometer. The BIST has an electrical stimulus generator, Capacitance-to-voltage converter, ∑ ∆ ADC. This thesis explains in detail the design of the Electrical stimulus generator. We have also designed a technique to correlate the parameters obtained from electrical stimuli to those obtained by mechanical stimuli. This method is cost effective since the additional circuitry needed to implement BIST is less since the technique utilizes most of the existing standard readout circuitry already present.
ContributorsJangala Naga, Naveen Sai (Author) / Ozev, Sule (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2014
153036-Thumbnail Image.png
Description
High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area

High speed current-steering DACs with high linearity are needed in today's applications such as wired and wireless communications, instrumentation, radar, and other direct digital synthesis (DDS) applications. However, a trade-off exists between the speed and resolution of Nyquist rate current-steering DACs. As the resolution increases, more transistor area is required to meet matching requirements for optimal linearity and thus, the overall speed of the DAC is limited.

In this thesis work, a 12-bit current-steering DAC was designed with current sources scaled below the required matching size to decrease the area and increase the overall speed of the DAC. By scaling the current sources, however, errors due to random mismatch between current sources will arise and additional calibration hardware is necessary to ensure 12-bit linearity. This work presents how to implement a self-calibration DAC that works to fix amplitude errors while maintaining a lower overall area. Additionally, the DAC designed in this thesis investigates the implementation feasibility of a data-interleaved architecture. Data interleaving can increase the total bandwidth of the DACs by 2 with an increase in SQNR by an additional 3 dB.

The final results show that the calibration method can effectively improve the linearity of the DAC. The DAC is able to run up to 400 MSPS frequencies with a 75 dB SFDR performance and above 87 dB SFDR performance at update rates of 200 MSPS.
ContributorsJankunas, Benjamin (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2014
151228-Thumbnail Image.png
Description
Micro-Electro Mechanical System (MEMS) is the micro-scale technology applying on various fields. Traditional testing strategy of MEMS requires physical stimulus, which leads to high cost specified equipment. Also there are a large number of wafer-level measurements for MEMS. A method of estimation calibration coefficient only by electrical stimulus based wafer

Micro-Electro Mechanical System (MEMS) is the micro-scale technology applying on various fields. Traditional testing strategy of MEMS requires physical stimulus, which leads to high cost specified equipment. Also there are a large number of wafer-level measurements for MEMS. A method of estimation calibration coefficient only by electrical stimulus based wafer level measurements is included in the thesis. Moreover, a statistical technique is introduced that can reduce the number of wafer level measurements, meanwhile obtaining an accurate estimate of unmeasured parameters. To improve estimation accuracy, outlier analysis is the effective technique and merged in the test flow. Besides, an algorithm for optimizing test set is included, also providing numerical estimated prediction error.
ContributorsDeng, Lingfei (Author) / Ozev, Sule (Thesis advisor) / Yu, Hongyu (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2012
158689-Thumbnail Image.png
Description
Micro Electro Mechanical Systems (MEMS) based accelerometers are one of the most commonly used sensors out there. They are used in devices such as, airbags, smartphones, airplanes, and many more. Although they are very accurate, they degrade with time or get offset due to some damage. To fix this, they

Micro Electro Mechanical Systems (MEMS) based accelerometers are one of the most commonly used sensors out there. They are used in devices such as, airbags, smartphones, airplanes, and many more. Although they are very accurate, they degrade with time or get offset due to some damage. To fix this, they must be calibrated again using physical calibration technique, which is an expensive process to conduct. However, these sensors can also be calibrated infield by applying an on-chip electrical stimulus to the sensor. Electrical stimulus-based calibration could bring the cost of testing and calibration significantly down as compared to factory testing. In this thesis, simulations are presented to formulate a statistical prediction model based on an electrical stimulus. Results from two different approaches of electrical calibration have been discussed. A prediction model with a root mean square error of 1% has been presented in this work. Experiments were conducted on commercially available accelerometers to test the techniques used for simulations.
ContributorsBassi, Ishaan (Author) / Ozev, Sule (Thesis advisor) / Christen, Jennifer Blain (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2020
155924-Thumbnail Image.png
Description
Testing and calibration constitute a significant part of the overall manufacturing cost of microelectromechanical system (MEMS) devices. Developing a low-cost testing and calibration scheme applicable at the user side that ensures the continuous reliability and accuracy is a crucial need. The main purpose of testing is to eliminate defective devices

Testing and calibration constitute a significant part of the overall manufacturing cost of microelectromechanical system (MEMS) devices. Developing a low-cost testing and calibration scheme applicable at the user side that ensures the continuous reliability and accuracy is a crucial need. The main purpose of testing is to eliminate defective devices and to verify the qualifications of a product is met. The calibration process for capacitive MEMS devices, for the most part, entails the determination of the mechanical sensitivity. In this work, a physical-stimulus-free built-in-self-test (BIST) integrated circuit (IC) design characterizing the sensitivity of capacitive MEMS accelerometers is presented. The BIST circuity can extract the amplitude and phase response of the acceleration sensor's mechanics under electrical excitation within 0.55% of error with respect to its mechanical sensitivity under the physical stimulus. Sensitivity characterization is performed using a low computation complexity multivariate linear regression model. The BIST circuitry maximizes the use of existing analog and mixed-signal readout signal chain and the host processor core, without the need for computationally expensive Fast Fourier Transform (FFT)-based approaches. The BIST IC is designed and fabricated using the 0.18-µm CMOS technology. The sensor analog front-end and BIST circuitry are integrated with a three-axis, low-g capacitive MEMS accelerometer in a single hermetically sealed package. The BIST circuitry occupies 0.3 mm2 with a total readout IC area of 1.0 mm2 and consumes 8.9 mW during self-test operation.
ContributorsOzel, Muhlis Kenan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ozev, Sule (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2017