Matching Items (10)
Filtering by

Clear all filters

151383-Thumbnail Image.png
Description
Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera -

Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera - Kinect is presented. We address this problem by first conducting a systematic analysis of the usability of Kinect for motion analysis in stroke rehabilitation. Then a hybrid upper body tracking approach is proposed which combines off-the-shelf skeleton tracking with a novel depth-fused mean shift tracking method. We proposed several kinematic features reliably extracted from the proposed inexpensive and portable motion capture system and classifiers that correlate torso movement to clinical measures of unimpaired and impaired. Experiment results show that the proposed sensing and analysis works reliably on measuring torso movement quality and is promising for end-point tracking. The system is currently being deployed for large-scale evaluations.
ContributorsDu, Tingfang (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Rikakis, Thanassis (Committee member) / Arizona State University (Publisher)
Created2012
153394-Thumbnail Image.png
Description
As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements even for sub-Nyquist sampling rates. However, current state-of-the-art reconstruction algorithms suffer from two drawbacks -- They are (1) computationally very expensive and (2) incapable of yielding high fidelity reconstructions for high compression ratios. In computer vision, the final goal is usually to perform an inference task using the images acquired and not signal recovery. With this motivation, this thesis considers the possibility of inference directly from compressed measurements, thereby obviating the need to use expensive reconstruction algorithms. It is often the case that non-linear features are used for inference tasks in computer vision. However, currently, it is unclear how to extract such features from compressed measurements. Instead, using the theoretical basis provided by the Johnson-Lindenstrauss lemma, discriminative features using smashed correlation filters are derived and it is shown that it is indeed possible to perform reconstruction-free inference at high compression ratios with only a marginal loss in accuracy. As a specific inference problem in computer vision, face recognition is considered, mainly beyond the visible spectrum such as in the short wave infra-red region (SWIR), where sensors are expensive.
ContributorsLohit, Suhas Anand (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
Description
Generating real-world content for VR is challenging in terms of capturing and processing at high resolution and high frame-rates. The content needs to represent a truly immersive experience, where the user can look around in 360-degree view and perceive the depth of the scene. The existing solutions only capture and

Generating real-world content for VR is challenging in terms of capturing and processing at high resolution and high frame-rates. The content needs to represent a truly immersive experience, where the user can look around in 360-degree view and perceive the depth of the scene. The existing solutions only capture and offload the compute load to the server. But offloading large amounts of raw camera feeds takes longer latencies and poses difficulties for real-time applications. By capturing and computing on the edge, we can closely integrate the systems and optimize for low latency. However, moving the traditional stitching algorithms to battery constrained device needs at least three orders of magnitude reduction in power. We believe that close integration of capture and compute stages will lead to reduced overall system power.

We approach the problem by building a hardware prototype and characterize the end-to-end system bottlenecks of power and performance. The prototype has 6 IMX274 cameras and uses Nvidia Jetson TX2 development board for capture and computation. We found that capturing is bottlenecked by sensor power and data-rates across interfaces, whereas compute is limited by the total number of computations per frame. Our characterization shows that redundant capture and redundant computations lead to high power, huge memory footprint, and high latency. The existing systems lack hardware-software co-design aspects, leading to excessive data transfers across the interfaces and expensive computations within the individual subsystems. Finally, we propose mechanisms to optimize the system for low power and low latency. We emphasize the importance of co-design of different subsystems to reduce and reuse the data. For example, reusing the motion vectors of the ISP stage reduces the memory footprint of the stereo correspondence stage. Our estimates show that pipelining and parallelization on custom FPGA can achieve real time stitching.
ContributorsGunnam, Sridhar (Author) / LiKamWa, Robert (Thesis advisor) / Turaga, Pavan (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2018
155085-Thumbnail Image.png
Description
High-level inference tasks in video applications such as recognition, video retrieval, and zero-shot classification have become an active research area in recent years. One fundamental requirement for such applications is to extract high-quality features that maintain high-level information in the videos.

Many video feature extraction algorithms have been purposed, such

High-level inference tasks in video applications such as recognition, video retrieval, and zero-shot classification have become an active research area in recent years. One fundamental requirement for such applications is to extract high-quality features that maintain high-level information in the videos.

Many video feature extraction algorithms have been purposed, such as STIP, HOG3D, and Dense Trajectories. These algorithms are often referred to as “handcrafted” features as they were deliberately designed based on some reasonable considerations. However, these algorithms may fail when dealing with high-level tasks or complex scene videos. Due to the success of using deep convolution neural networks (CNNs) to extract global representations for static images, researchers have been using similar techniques to tackle video contents. Typical techniques first extract spatial features by processing raw images using deep convolution architectures designed for static image classifications. Then simple average, concatenation or classifier-based fusion/pooling methods are applied to the extracted features. I argue that features extracted in such ways do not acquire enough representative information since videos, unlike images, should be characterized as a temporal sequence of semantically coherent visual contents and thus need to be represented in a manner considering both semantic and spatio-temporal information.

In this thesis, I propose a novel architecture to learn semantic spatio-temporal embedding for videos to support high-level video analysis. The proposed method encodes video spatial and temporal information separately by employing a deep architecture consisting of two channels of convolutional neural networks (capturing appearance and local motion) followed by their corresponding Fully Connected Gated Recurrent Unit (FC-GRU) encoders for capturing longer-term temporal structure of the CNN features. The resultant spatio-temporal representation (a vector) is used to learn a mapping via a Fully Connected Multilayer Perceptron (FC-MLP) to the word2vec semantic embedding space, leading to a semantic interpretation of the video vector that supports high-level analysis. I evaluate the usefulness and effectiveness of this new video representation by conducting experiments on action recognition, zero-shot video classification, and semantic video retrieval (word-to-video) retrieval, using the UCF101 action recognition dataset.
ContributorsHu, Sheng-Hung (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Liang, Jianming (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2016
155809-Thumbnail Image.png
Description
Light field imaging is limited in its computational processing demands of high

sampling for both spatial and angular dimensions. Single-shot light field cameras

sacrifice spatial resolution to sample angular viewpoints, typically by multiplexing

incoming rays onto a 2D sensor array. While this resolution can be recovered using

compressive sensing, these iterative solutions are slow

Light field imaging is limited in its computational processing demands of high

sampling for both spatial and angular dimensions. Single-shot light field cameras

sacrifice spatial resolution to sample angular viewpoints, typically by multiplexing

incoming rays onto a 2D sensor array. While this resolution can be recovered using

compressive sensing, these iterative solutions are slow in processing a light field. We

present a deep learning approach using a new, two branch network architecture,

consisting jointly of an autoencoder and a 4D CNN, to recover a high resolution

4D light field from a single coded 2D image. This network decreases reconstruction

time significantly while achieving average PSNR values of 26-32 dB on a variety of

light fields. In particular, reconstruction time is decreased from 35 minutes to 6.7

minutes as compared to the dictionary method for equivalent visual quality. These

reconstructions are performed at small sampling/compression ratios as low as 8%,

allowing for cheaper coded light field cameras. We test our network reconstructions

on synthetic light fields, simulated coded measurements of real light fields captured

from a Lytro Illum camera, and real coded images from a custom CMOS diffractive

light field camera. The combination of compressive light field capture with deep

learning allows the potential for real-time light field video acquisition systems in the

future.
ContributorsGupta, Mayank (Author) / Turaga, Pavan (Thesis advisor) / Yang, Yezhou (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2017
187831-Thumbnail Image.png
Description
This project explores the potential for the accurate prediction of basketball shooting posture with machine learning (ML) prediction algorithms, using the data collected by an Internet of Things (IoT) based motion capture system. Specifically, this question is addressed in the research - Can I develop an ML model to generalize

This project explores the potential for the accurate prediction of basketball shooting posture with machine learning (ML) prediction algorithms, using the data collected by an Internet of Things (IoT) based motion capture system. Specifically, this question is addressed in the research - Can I develop an ML model to generalize a decent basketball shot pattern? - by introducing a supervised learning paradigm, where the ML method takes acceleration attributes to predict the basketball shot efficiency. The solution presented in this study considers motion capture devices configuration on the right upper limb with a sole motion sensor made by BNO080 and ESP32 attached on the right wrist, right forearm, and right shoulder, respectively, By observing the rate of speed changing in the shooting movement and comparing their performance, ML models that apply K-Nearest Neighbor, and Decision Tree algorithm, conclude the best range of acceleration that different spots on the arm should implement.
ContributorsLiang, Chengxu (Author) / Ingalls, Todd (Thesis advisor) / Turaga, Pavan (Thesis advisor) / De Luca, Gennaro (Committee member) / Arizona State University (Publisher)
Created2023
Description
Realistic lighting is important to improve immersion and make mixed reality applications seem more plausible. To properly blend the AR objects in the real scene, it is important to study the lighting of the environment. The existing illuminationframeworks proposed by Google’s ARCore (Google’s Augmented Reality Software Development Kit) and Apple’s

Realistic lighting is important to improve immersion and make mixed reality applications seem more plausible. To properly blend the AR objects in the real scene, it is important to study the lighting of the environment. The existing illuminationframeworks proposed by Google’s ARCore (Google’s Augmented Reality Software Development Kit) and Apple’s ARKit (Apple’s Augmented Reality Software Development Kit) are computationally expensive and have very slow refresh rates, which make them incompatible for dynamic environments and low-end mobile devices. Recently, there have been other illumination estimation frameworks such as GLEAM, Xihe, which aim at providing better illumination with faster refresh rates. GLEAM is an illumination estimation framework that understands the real scene by collecting pixel data from a reflecting spherical light probe. GLEAM uses this data to form environment cubemaps which are later mapped onto a reflection probe to generate illumination for AR objects. It is noticed that from a single viewpoint only one half of the light probe can be observed at a time which does not give complete information about the environment. This leads to the idea of having a multi-viewpoint estimation for better performance. This thesis work analyzes the multi-viewpoint capabilities of AR illumination frameworks that use physical light probes to understand the environment. The current work builds networking using TCP and UDP protocols on GLEAM. This thesis work also documents how processor load sharing has been done while networking devices and how that benefits the performance of GLEAM on mobile devices. Some enhancements using multi-threading have also been made to the already existing GLEAM model to improve its performance.
ContributorsGurram, Sahithi (Author) / LiKamWa, Robert (Thesis advisor) / Jayasuriya, Suren (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2022
157866-Thumbnail Image.png
Description
This thesis addresses the problem of recommending a viewpoint for aesthetic photography. Viewpoint recommendation is suggesting the best camera pose to capture a visually pleasing photograph of the subject of interest by using any end-user device such as drone, mobile robot or smartphone. Solving this problem enables to capture visually

This thesis addresses the problem of recommending a viewpoint for aesthetic photography. Viewpoint recommendation is suggesting the best camera pose to capture a visually pleasing photograph of the subject of interest by using any end-user device such as drone, mobile robot or smartphone. Solving this problem enables to capture visually pleasing photographs autonomously in areal photography, wildlife photography, landscape photography or in personal photography.

The viewpoint recommendation problem can be divided into two stages: (a) generating a set of dense novel views based on the basis views captured about the subject. The dense novel views are useful to better understand the scene and to know how the subject looks from different viewpoints and (b) each novel is scored based on how aesthetically good it is. The viewpoint with the greatest aesthetic score is recommended for capturing a visually pleasing photograph.
ContributorsKatukuri, Sathish Kumar (Author) / LiKamWa, Robert (Thesis advisor) / Turaga, Pavan (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2019
Description
The autonomous vehicle technology has come a long way, but currently, there are no companies that are able to offer fully autonomous ride in any conditions, on any road without any human supervision. These systems should be extensively trained and validated to guarantee safe human transportation. Any small errors in

The autonomous vehicle technology has come a long way, but currently, there are no companies that are able to offer fully autonomous ride in any conditions, on any road without any human supervision. These systems should be extensively trained and validated to guarantee safe human transportation. Any small errors in the system functionality may lead to fatal accidents and may endanger human lives. Deep learning methods are widely used for environment perception and prediction of hazardous situations. These techniques require huge amount of training data with both normal and abnormal samples to enable the vehicle to avoid a dangerous situation.



The goal of this thesis is to generate simulations from real-world tricky collision scenarios for training and testing autonomous vehicles. Dashcam crash videos from the internet can now be utilized to extract valuable collision data and recreate the crash scenarios in a simulator. The problem of extracting 3D vehicle trajectories from videos recorded by an unknown monocular camera source is solved using a modular approach. The framework is divided into two stages: (a) extracting meaningful adversarial trajectories from short crash videos, and (b) developing methods to automatically process and simulate the vehicle trajectories on a vehicle simulator.
ContributorsBashetty, Sai Krishna (Author) / Fainkeos, Georgios (Thesis advisor) / Amor, Heni Ben (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2019
158896-Thumbnail Image.png
Description
Cameras have become commonplace with wide-ranging applications of phone photography, computer vision, and medical imaging. With a growing need to reduce size and costs while maintaining image quality, the need to look past traditional style of cameras is becoming more apparent. Several non-traditional cameras have shown to be promising options

Cameras have become commonplace with wide-ranging applications of phone photography, computer vision, and medical imaging. With a growing need to reduce size and costs while maintaining image quality, the need to look past traditional style of cameras is becoming more apparent. Several non-traditional cameras have shown to be promising options for size-constraint applications, and while they may offer several advantages, they also usually are limited by image quality degradation due to optical or a need to reconstruct a captured image. In this thesis, we take a look at three of these non-traditional cameras: a pinhole camera, a diffusion-mask lensless camera, and an under-display camera (UDC).

For each of these cases, I present a feasible image restoration pipeline to correct for their particular limitations. For the pinhole camera, I present an early pipeline to allow for practical pinhole photography by reducing noise levels caused by low-light imaging, enhancing exposure levels, and sharpening the blur caused by the pinhole. For lensless cameras, we explore a neural network architecture that performs joint image reconstruction and point spread function (PSF) estimation to robustly recover images captured with multiple PSFs from different cameras. Using adversarial learning, this approach achieves improved reconstruction results that do not require explicit knowledge of the PSF at test-time and shows an added improvement in the reconstruction model’s ability to generalize to variations in the camera’s PSF. This allows lensless cameras to be utilized in a wider range of applications that require multiple cameras without the need to explicitly train a separate model for each new camera. For UDCs, we utilize a multi-stage approach to correct for low light transmission, blur, and haze. This pipeline uses a PyNET deep neural network architecture to perform a majority of the restoration, while additionally using a traditional optimization approach which is then fused in a learned manner in the second stage to improve high-frequency features. I show results from this novel fusion approach that is on-par with the state of the art.
ContributorsRego, Joshua D (Author) / Jayasuriya, Suren (Thesis advisor) / Blain Christen, Jennifer (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2020