Matching Items (10)

134261-Thumbnail Image.png

Leveraging Building Information Modeling to Support Building Portfolio Management: A Case Study

Description

Building information modeling (BIM) has already sparked changes in design and construction practices, ranging from new methods to coordinate work during design to supporting paperless construction sites where crews use handheld devices in lieu of paper plans. It is seen

Building information modeling (BIM) has already sparked changes in design and construction practices, ranging from new methods to coordinate work during design to supporting paperless construction sites where crews use handheld devices in lieu of paper plans. It is seen as the starting point for the larger picture, virtual design and construction (VDC). While some research has explored the feasibility of using BIM for Facilities Management (FM) this practice is yet to become widely accepted and integrated. This paper explores how VDC could improve the operations of a Facilities Management department at a large state university. Specifically, the authors examine the degree to which institutional requirements foster BIM use during building operations, the ability of models to interface with existing FM software, and the willingness of FM executives to incorporate BIM into their processes. The authors also discuss the sorts of information contained in building models that FM could find most useful, and highlight those pieces of information required for FM that many building models do not contain. Finally, the paper closes with a set of recommendations about how to create building models that more seamlessly integrate into existing Facilities Management processes at the university studied, in order to draw a set of recommendations that may apply more broadly to state universities and similar institutions.

Contributors

Agent

Created

Date Created
2017-05

137405-Thumbnail Image.png

Optimal Scheduling of the Refurbishment of Rotable Parts in an Aircraft Maintenance System

Description

The efficient refurbishment of rotable parts on an aircraft proves to be a main concern for airline carriers today. Airlines must be able to seamlessly rotate parts into and out of the system for maintenance in accordance with FAA requirements

The efficient refurbishment of rotable parts on an aircraft proves to be a main concern for airline carriers today. Airlines must be able to seamlessly rotate parts into and out of the system for maintenance in accordance with FAA requirements while leaving daily operations uninterrupted. In this paper, we develop an airline maintenance scheduling model that constructs an optimal schedule for part maintenance over a given time horizon using deterministic forecasting techniques. The model generates a schedule that minimizes the total cost of a maintenance schedule solution while maximizing the utility of all parts in the system. The model is then tested against actual network data of three part types crucial to airline operations and used to investigate the current data collection processes of US Airways maintenance lead time metrics. Manual sensitivity analysis is performed to generate the marginal value of each parameter and potential model extensions are highlighted as a result of these conclusions.

Contributors

Agent

Created

Date Created
2013-12

Development of a monitoring and maintenance program for residential wells used for groundwater abstraction in Lagos State, Nigeria

Description

In rural and urban areas of Nigeria, dependence on groundwater is increasing since the population is growing and high quality, treated municipal water is scarce. Municipal drinking water is often compromised because of old and leaking distribution pipes. About 58%

In rural and urban areas of Nigeria, dependence on groundwater is increasing since the population is growing and high quality, treated municipal water is scarce. Municipal drinking water is often compromised because of old and leaking distribution pipes. About 58% of the water consumed in Lagos State, Nigeria, comes from residential wells. However, a majority of residential wells are shallow wells that are constructed relatively close to septic tanks or pit latrines and are therefore subject to contamination. In certain parts of Africa, there is high potential of severe epidemic if water quality is not improved. With increasing reliance on groundwater, a need exists to monitor the quality of groundwater. This thesis develops a plan for a monitoring program for residential wells in Lagos State, Nigeria. The program focuses on ways by which owners can maintain reasonably good water quality, and on the role of government in implementing water quality requirements. In addition, this thesis describes a survey conducted in various areas of Lagos State to assess community awareness of the importance of groundwater quality and its impact on individuals and the community at large. The survey shows that 30% to 40% of the households have located their wells and septic tanks in the same general area. Various templates have been created to help the staff of a future monitoring program team to effectively gather information during site characterization. A "Questions and Answers" leaflet has been developed to educate citizens about the need for monitoring residential wells. 

Contributors

Agent

Created

Date Created
2010

150719-Thumbnail Image.png

Utilization of metaheuristic methods in the holistic optimization of municipal right of way infrastructure management

Description

This dissertation presents a portable methodology for holistic planning and optimization of right of way infrastructure rehabilitation that was designed to generate monetary savings when compared to planning that only considers single infrastructure components. Holistic right of way infrastructure planning

This dissertation presents a portable methodology for holistic planning and optimization of right of way infrastructure rehabilitation that was designed to generate monetary savings when compared to planning that only considers single infrastructure components. Holistic right of way infrastructure planning requires simultaneous consideration of the three right of way infrastructure components that are typically owned and operated under the same municipal umbrella: roads, sewer, and water. The traditional paradigm for the planning of right way asset management involves operating in silos where there is little collaboration amongst different utility departments in the planning of maintenance, rehabilitation, and renewal projects. By collaborating across utilities during the planning phase, savings can be achieved when collocated rehabilitation projects from different right of way infrastructure components are synchronized to occur at the same time. These savings are in the form of shared overhead and mobilization costs, and roadway projects providing open space for subsurface utilities. Individual component models and a holistic model that utilize evolutionary algorithms to optimize five year maintenance, rehabilitation, and renewal plans for the road, sewer, and water components were created and compared. The models were designed to be portable so that they could be used with any infrastructure condition rating, deterioration modeling, and criticality assessment systems that might already be in place with a municipality. The models attempt to minimize the overall component score, which is a function of the criticality and condition of the segments within each network, by prescribing asset management activities to different segments within a component network while subject to a constraining budget. The individual models were designed to represent the traditional decision making paradigm and were compared to the holistic model. In testing at three different budget levels, the holistic model outperformed the individual models in the ability to generate five year plans that optimized prescribed maintenance, rehabilitation and renewal for various segments in order to achieve the goal of improving the component score. The methodology also achieved the goal of being portable, in that it is compatible with any condition rating, deterioration, and criticality system.

Contributors

Agent

Created

Date Created
2012

135011-Thumbnail Image.png

Discounting the Future

Description

The culture of the 1970s in the United States of America was progressive and revolutionary. Due to various events that were unfavorable to the public, U.S. citizens began to lose trust in their government. Signs of the public's revolt and

The culture of the 1970s in the United States of America was progressive and revolutionary. Due to various events that were unfavorable to the public, U.S. citizens began to lose trust in their government. Signs of the public's revolt and dissention began to show in laws and propositions voters passed. In California, Proposition 13 was one of many anti-tax laws taxpayers voted for to cut back the control of the government. As a result, revenues for public services and improvements decreased and maintenance allocations for infrastructure systems were considerably reduced. Fast-forwarding to today, infrastructure systems in the U.S. are reaching their retirement period and are requiring extreme maintenance and attention. Los Angeles has been experiencing severe water main breaks in its water distribution system for several years now, but the city is lacking funds to replace the aging pipes. The lack of funds paired with aging infrastructure indicates there is a flaw in the forecasting analysis techniques used today to project infrastructure costs. Therefore, an alternative discounting function to the exponential is proposed: the hyperbolic discounting function. A comparative analysis was performed using a hyperbolic and an exponential discounting function. The two functions were calibrated over the course of 50 years and the parameters r and a were determined. Then the discounts were applied to a 50-year expenditure projection for pipe replacements of a water distribution system. The present value was computed with each discount function and results were obtained. By year 50, the hyperbolic function yielded a higher present value of $25.06 million and the exponential function yielded a present value of $14 million. These results lead to the conclusion that the hyperbolic discounting function is the preferred methodology when calculating long-term expenditures, especially those dependent on tax revenue.

Contributors

Agent

Created

Date Created
2016-12

150133-Thumbnail Image.png

Leadership based accountability for facilities management

Description

ABSTRACT Facility managers have an important job in today's competitive business world by caring for the backbone of the corporation's capital. Maintaining assets and the support efforts cause facility managers to fight an uphill battle to prove the worth of

ABSTRACT Facility managers have an important job in today's competitive business world by caring for the backbone of the corporation's capital. Maintaining assets and the support efforts cause facility managers to fight an uphill battle to prove the worth of their organizations. This thesis will discuss the important and flexible use of measurement and leadership reports and the benefits of justifying the work required to maintain or upgrade a facility. The task is streamlined by invoking accountability to subject experts. The facility manager must trust in the ability of his or her work force to get the job done. However, with accountability comes increased risk. Even though accountability may not alleviate total control or cease reactionary actions, facility managers can develop key leadership based reports to reassign accountability and measure subject matter experts while simultaneously reducing reactionary actions leading to increased cost. Identifying and reassigning risk that are not controlled to subject matter experts is imperative for effective facility management leadership and allows facility managers to create an accurate and solid facility management plan, supports the organization's succession plan, and allows the organization to focus on key competencies.

Contributors

Agent

Created

Date Created
2011

157915-Thumbnail Image.png

Computerized Maintenance Management Systems: Misconceptions Between Management & Operations

Description

Research findings have shown that many computerized maintenance management systems (CMMS) are largely underutilized, often leading to the loss of efficiencies in the organization’s maintenance program. A literature review is presented of the available research in CMMS and of operations

Research findings have shown that many computerized maintenance management systems (CMMS) are largely underutilized, often leading to the loss of efficiencies in the organization’s maintenance program. A literature review is presented of the available research in CMMS and of operations and management roles in a maintenance program. In addition, research was conducted around CMMS users to identify if any misalignments exist between management and operations. The articles selected for review offer a variety of perspectives, considerations, instructions, and noted failures involved with implementation, day to day use and reporting expectations. Through conducting a survey of both management and operations this paper will show how management and operations conceptions of CMMS vary, even greatly in some areas. The objective of this research is to gain an in-depth perspective from CMMS in all roles and analyze where utilizations vary. This information will then be utilized to understand possible misconceptions between roles, leading to inaccuracies and sub-par outcomes of proposed CMMS implementations.

Contributors

Agent

Created

Date Created
2019

157614-Thumbnail Image.png

Ranking of bulk transmission assets for maintenance decisions

Description

Reliable and secure operation of bulk power transmission system components is an important aspect of electric power engineering. Component failures in a transmission network can lead to serious consequences and impact system reliability. The operational health of the transmission assets

Reliable and secure operation of bulk power transmission system components is an important aspect of electric power engineering. Component failures in a transmission network can lead to serious consequences and impact system reliability. The operational health of the transmission assets plays a crucial role in determining the reliability of an electric grid. To achieve this goal, scheduled maintenance of bulk power system components is an important activity to secure the transmission system against unanticipated events. This thesis identifies critical transmission elements in a 500 kV transmission network utilizing a ranking strategy.

The impact of the failure of transmission assets operated by a major utility company in the Southwest United States on its power system network is studied. A methodology is used to quantify the impact and subsequently rank transmission assets in decreasing order of their criticality. The analysis is carried out on the power system network using a node breaker model and steady state analysis. The light load case of spring 2019, peak load case of summer 2023 and two intermediate load cases have been considered for the ranking. The contingency simulations and power flow studies have been carried out using a commercial power flow study software package, Positive Sequence Load Flow (PSLF). The results obtained from PSLF are analyzed using Matlab to obtain the desired ranking. The ranked list of transmission assets will enable asset managers to identify the assets that have the most significant impact on the overall power system network performance. Therefore, investment and maintenance decisions can be made effectively. A conclusion along with a recommendation for future work is also provided in the thesis.

Contributors

Agent

Created

Date Created
2019

155453-Thumbnail Image.png

Application of lean six sigma to improve service in healthcare facilities management: a case study

Description

The purpose of this paper is to present a case study on the application of the Lean Six Sigma (LSS) quality improvement methodology and tools to study the analysis and improvement of facilities management (FM) services at a healthcare organization.

The purpose of this paper is to present a case study on the application of the Lean Six Sigma (LSS) quality improvement methodology and tools to study the analysis and improvement of facilities management (FM) services at a healthcare organization. Research literature was reviewed concerning whether or not LSS has been applied in healthcare-based FM, but no such studies have been published. This paper aims to address the lack of an applicable methodology for LSS intervention within the context of healthcare-based FM. The Define, Measure, Analyze, Improve, and Control (DMAIC) framework was followed to test the hypothesis that LSS can improve the service provided by an FM department responsible for the maintenance and repair of furniture and finishes at a large healthcare organization in the southwest United States of America. Quality improvement curricula and resources offered by the case study organization equipped the FM department to apply LSS over the course of a five-month period. Qualitative data were gathered from pre- and post-intervention surveys while quantitative data were gathered with the Organization’s computerized maintenance management system (CMMS) software. Overall, LSS application proved to be useful for the intended purpose. The author proposes that application of LSS by other FM departments to improve their services could also be successful, which is noteworthy and deserving of continued research.

Contributors

Agent

Created

Date Created
2017

149520-Thumbnail Image.png

Plant migration along freeways in and around an arid urban area: Phoenix, Arizona

Description

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants

General ecological thought pertaining to plant biology, conservation, and urban areas has rested on two potentially contradictory underlying assumptions. The first is that non-native plants can spread easily from human developments to “pristine” areas. The second is that native plants cannot disperse through developed areas. Both assume anthropogenic changes to ecosystems create conditions that favor non-native plants and hinder native species. However, it is just as likely that anthropogenic alterations of habitats will favor certain groups of plant species with similar functional traits, whether native or not. Migration of plants can be divided into the following stages: dispersal, germination, establishment, reproduction and spread. Functional traits of species determine which are most successful at each of the stages of invasion or range enlargement. I studied the traits that allow both native and non-native plant species to disperse into freeway corridors, germinate, establish, reproduce, and then disperse along those corridors in Phoenix, Arizona. Field methods included seed bank sample collection and germination, vegetation surveys, and seed trapping. I also evaluated concentrations of plant-available nitrate as a result of localized nitrogen deposition. While many plant species found on the roadsides are either landscape varieties or typical weedy species, some uncommon native species and unexpected non-native species were also encountered. Maintenance regimes greatly influence the amount of vegetative cover and species composition along roadsides. Understanding which traits permit success at various stages of the invasion process indicates whether it is native, non-native, or species with particular traits that are likely to move through the city and establish in the desert. In a related case study conducted in Victoria, Australia, transportation professionals and ecologists were surveyed regarding preferences for roadside landscape design. Roadside design and maintenance projects are typically influenced by different groups of transportation professionals at various stages in a linear project cycle. Landscape architects and design professionals have distinct preferences and priorities compared to other transportation professionals and trained ecologists. The case study reveals the need for collaboration throughout the stages of design, construction and maintenance in order to efficiently manage roadsides for multiple priorities.

Contributors

Agent

Created

Date Created
2010