Matching Items (3)

Filtering by

Clear all filters

136104-Thumbnail Image.png

Evaluating the Hemodynamics of Computational Fluid Dynamic Simulations as a Diagnostic Tool for Coarctation of the Aorta

Description

A specific type of Congenital Heart Defect (CHD) known as Coarctation (narrowing) of the Aorta (CoA) prevails in 10% of all CHD patients resulting in life-threatening conditions. Treatments involve limited medical therapy (i.e PGE1 therapy), but in majority of CoA

A specific type of Congenital Heart Defect (CHD) known as Coarctation (narrowing) of the Aorta (CoA) prevails in 10% of all CHD patients resulting in life-threatening conditions. Treatments involve limited medical therapy (i.e PGE1 therapy), but in majority of CoA cases, planned surgical treatments are very common. The surgical approach is dictated by the severity of the coarctation, by which the method of treatments is divided between minimally invasive and extensive invasive procedures. Modern diagnostic procedures allude to many disadvantages making it difficult for clinical practices to properly deliver an optimal form of care. Computational Fluid Dynamics (CFD) technique addresses these issues by providing new forms of diagnostic measures that is non-invasive, inexpensive, and more accurate compared to other evaluative devices. To explore further using the CFD based alternative diagnostic measure, this project aims to validate CFD techniques through in vitro studies that capture the fluid flow in anatomically accurate aortic structures. These studies combine particle image velocimetry and catheterization experimental techniques in order to provide a significant knowledge towards validation of fluid flow simulations.

Contributors

Agent

Created

Date Created
2015-05

148228-Thumbnail Image.png

Fetal Growth Models of Cardiac Size and Function, and Prediction of Congenital Cardiomyopathy in Fetuses with Diabetic Mothers

Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

Contributors

Agent

Created

Date Created
2021-05

148229-Thumbnail Image.png

Fetal Growth Models of Cardiac Size and Function, and Prediction of Congenital Cardiomyopathy in Fetuses with Diabetic Mothers

Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers, but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

Contributors

Agent

Created

Date Created
2021-05