Matching Items (6)
Filtering by

Clear all filters

151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
134153-Thumbnail Image.png
Description
Capsaicin and dihydrocapsaicin account for 90% of capsaicinoids when it comes to the pungency of peppers. Capsaicin stability was investigated through a cooking and storage parameter where three different tests were done; cooking duration, cooking temperature, and storage stability. The concentration of capsaicinoids was quantified through gas chromatography-mass spectrometry where

Capsaicin and dihydrocapsaicin account for 90% of capsaicinoids when it comes to the pungency of peppers. Capsaicin stability was investigated through a cooking and storage parameter where three different tests were done; cooking duration, cooking temperature, and storage stability. The concentration of capsaicinoids was quantified through gas chromatography-mass spectrometry where those values were then used to determine the total Scoville heat units (SHU). Furthermore, half-life was determined by finding the decay rate during cooking and storage. Results showed that there was an increase in degradation of capsaicinoids concentration when peppers were cooked for a long period of time. Degradation rate increases with increasing temperatures as would be expected by the Arrhenius equation. Hence, if a maximum pungency is wanted, it is best to cook the least time as possible or add the peppers towards the end of the culinary technique. This would help by cooking the peppers for a short period of time while not being exposed to the high temperature long enough before significant degradation occurs. Lastly, the storage stability results interpreted that a maximum potency of the peppers can be retained in a freezer or refrigerator opposed to an open room temperature environment or exposure from the sun. Furthermore, the stability of peppers has a long shelf life with even that the worse storage condition's half-life value was 113.5 months (9.5 years). Thus, peppers do not need to be bought frequently because its potency will last for several years.
ContributorsBustamante, Krista Gisselle (Author) / Cahill, Thomas (Thesis director) / Sweat, Ken (Committee member) / Armendariz Guajardo, Jose (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135071-Thumbnail Image.png
Description
Colchicine is a chemical known for inhibiting mitosis during eukaryotic cellular reproduction by halting the tubulin formation necessary for the division of the chromosomes. The meristem is the primary source of mitosis in developing flowering plants, and it was the focus of our research to determine if the hindrance of

Colchicine is a chemical known for inhibiting mitosis during eukaryotic cellular reproduction by halting the tubulin formation necessary for the division of the chromosomes. The meristem is the primary source of mitosis in developing flowering plants, and it was the focus of our research to determine if the hindrance of mitosis would interfere with the production of capsaicinoids within pungent pepper plants. Moruga Scorpion peppers have one of the world's highest concentration of capsaicinoids with Scoville Heat Units (SHU) averaging 1.2 million SHU (Bannister, 2012). The highest concentration of these capsaicinoids are within the placental and endocarp regions of the fruit, which are the primary location for capsaicinoid biosynthesis (Aza-Gonzalez & Nunez-Palenius, 2010). Hindering mitosis from the earliest stage of development could lead to phenotypic abnormalities within those placental and endocarp regions, quite possibly through the mechanism of the induced polyploidy. In many cases, this polymerization interference is beneficial in cultivating plants with characterized polyploidy due to its desired increased size of fruits and leaves. Due to the lethal nature of colchicine, there is threshold of effectiveness where it may induce polyploidy or it may result in fatality. This first stage of this research sought to determine which lethal dose was required to elicit a polyploid response or lead to seed unviability. The second stage was analyzing capsaicin concentration within the fruit of the mature dosed plants to determine whether there was an effect on the capsaicinoids, and whether polyploidy played a role in those effects. The final inspection of this research was in germinating the seeds from the hottest F1 pepper that had developed the fruit the slowest of all the doses, and determining whether there were any effects on the germination or seedling development.
ContributorsKeppler, Lydia Jacqueline (Author) / Cahill, Thomas (Thesis director) / Sweat, Ken G. (Committee member) / Hackney Price, Jennifer (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work

ABSTRACT Many musicians, both amateur and professional alike, are continuously seeking to expand and explore their performance literature and repertory. Introducing new works into the standard repertory is an exciting endeavor for any active musician. Establishing connections, commissioning new works, and collaborating on performances can all work together toward the acceptance and success of a composer's music within an instrument community. For the flute, one such composer is Daniel Dorff (b. 1956). Dorff, a Philadelphia-based composer, has written for symphony orchestra, clarinet, contrabassoon, and others; however, his award-winning works for flute and piccolo are earning him much recognition. He has written works for such illustrious flutists as Mimi Stillman, Walfrid Kujala, and Gary Schocker; his flute works have been recorded by Laurel Zucker, Pamela Youngblood and Lois Bliss Herbine; and his pieces have been performed and premiered at each of the National Flute Association Conventions from 2004 to 2009. Despite this success, little has been written about Dorff's life, compositional style, and contributions to the flute repertory. In order to further promote the flute works of Daniel Dorff, the primary focus of this study is the creation of a compact disc recording of Dorff's most prominent works for flute: April Whirlwind, 9 Walks Down 7th Avenue, both for flute and piano, and Nocturne Caprice for solo flute. In support of this recording, the study also provides biographical information regarding Daniel Dorff, discusses his compositional methods and ideology, and presents background information, description, and performance notes for each piece. Interviews with Daniel Dorff regarding biographical and compositional details serve as the primary source for this document. Suggestions for the performance of the three flute works were gathered through interviews with prominent flutists who have studied and performed Dorff's pieces. Additional performance suggestions for Nocturne Caprice were gathered through a coaching session between the author and the composer. This project is meant to promote the flute works of Daniel Dorff and to help establish their role in the standard flute repertory.
ContributorsRich, Angela Marie (Contributor) / Novak, Gail (Pianist) (Performer) / Buck, Elizabeth Y (Thesis advisor) / Hill, Gary W. (Committee member) / Holbrook, Amy (Committee member) / Schuring, Martin (Committee member) / Arizona State University (Publisher)
Created2010
157975-Thumbnail Image.png
Description
Transient receptor potential vanilloid member 1 (TRPV1) is a membrane protein ion channel that functions as a heat and capsaicin receptor. In addition to activation by hot temperature and vanilloid compounds such as capsaicin, TRPV1 is modulated by various stimuli including acidic pH, endogenous lipids, diverse biological and synthetic chemical

Transient receptor potential vanilloid member 1 (TRPV1) is a membrane protein ion channel that functions as a heat and capsaicin receptor. In addition to activation by hot temperature and vanilloid compounds such as capsaicin, TRPV1 is modulated by various stimuli including acidic pH, endogenous lipids, diverse biological and synthetic chemical ligands, and modulatory proteins. Due to its sensitivity to noxious stimuli such as high temperature and pungent chemicals, there has been significant evidence that TRPV1 participates in a variety of human physiological and pathophysiological pathways, raising the potential of TRPV1 as an attractive therapeutic target. However, the polymodal nature of TRPV1 function has complicated clinical application because the TRPV1 activation mechanisms from different modes have generally been enigmatic. Consequently, tremendous efforts have put into dissecting the mechanisms of different activation modes, but numerous questions remain to be answered.

The studies conducted in this dissertation probed the role of the S1-S4 membrane domain in temperature and ligand activation of human TRPV1. Temperature-dependent solution nuclear magnetic resonance (NMR) spectroscopy for thermodynamic and mechanistic studies of the S1-S4 domain. From these results, a potential temperature sensing mechanism of TRPV1, initiated from the S1-S4 domain, was proposed. Additionally, direct binding of various ligands to the S1-S4 domain were used to ascertain the interaction site and the affinities (Kd) of various ligands to this domain. These results are the first to study the isolated S1-S4 domain of human TRPV1 and many results indicate that the S1-S4 domain is crucial for both temperature-sensing and is the general receptor binding site central to chemical activation.
ContributorsKim, Minjoo (Author) / Van Horn, Wade D (Thesis advisor) / Wang, Xu (Committee member) / Liu, Wei (Committee member) / Arizona State University (Publisher)
Created2019
190763-Thumbnail Image.png
Description
Transient Receptor Potential Vanilloid-1 (TRPV1) is an integral membrane polymodal cation channel involved in various essential biological functions, including thermosensing, thermoregulation, and nociception. Discrete TRPV1 activation modes such as ligand, heat, and proton have been challenging to disentangle. However, dissecting the polymodal nature of TRPV1 is essential for therapeutic development.

Transient Receptor Potential Vanilloid-1 (TRPV1) is an integral membrane polymodal cation channel involved in various essential biological functions, including thermosensing, thermoregulation, and nociception. Discrete TRPV1 activation modes such as ligand, heat, and proton have been challenging to disentangle. However, dissecting the polymodal nature of TRPV1 is essential for therapeutic development. The human TRPV1 (hTRPV1) voltage-sensing like domain (VSLD; transmembrane helices S1-S4) contains the canonical vanilloid ligand binding site and significantly contributes to thermosensing. Nuclear magnetic resonance (NMR)-detected studies probe the role of the hTRPV1-VSLD in TRPV1 polymodal function. The hTRPV1-VSLD is identified as an allosteric hub for all three primary TRPV1 activation modes and demonstrates plasticity in chemical ligand modulation. The presented results underscore molecular features in the VSLD that dictate TRPV1 function, highlighting important considerations for future therapeutic design.
ContributorsOwens, Aerial M. (Author) / Van Horn, Wade D. (Thesis advisor) / Levitus, Marcia (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2023