Matching Items (2)
Filtering by

Clear all filters

157907-Thumbnail Image.png
Description
In the past decade, technological breakthroughs have facilitated structure determination of so many difficult-to-study membrane protein targets. In this thesis research, three techniques were investigated to enable the structural determination of such challenging targets, polychromatic pink-beam serial crystallography with high-viscous sample, lipidic cubic phase (LCP)-based microcrystal electron diffraction (MicroED), and

In the past decade, technological breakthroughs have facilitated structure determination of so many difficult-to-study membrane protein targets. In this thesis research, three techniques were investigated to enable the structural determination of such challenging targets, polychromatic pink-beam serial crystallography with high-viscous sample, lipidic cubic phase (LCP)-based microcrystal electron diffraction (MicroED), and single-particle cryogenic electron microscopy targeting (cryoEM).

Inspired by the successful serial crystallography (SX) experiment at a synchrotron radiation source, it is first-time equipping the high-viscosity injector to X-ray fluxes increased at 100 times by a moderate increased in bandwidth to perform the pink beam SX experiments. The structure of proteinase K (PK) was determined to 1.8 Å resolution with 4 consecutive 100 ps X-ray pink beam pulse exposures. The structure of human A2A adenosine receptor (A2AAR) reached to a 4.2 Å resolution using 24 consecutive X-ray pink beam pulse exposures. It has proven the feasibility to utilize such storage-ring synchrotron sources complemented to serial femtosecond crystallography, presenting new opportunities for microcrystallography and the time-resolved experiments.

As an alternative approach to serial femtosecond crystallography, a novel protocol was developed to combine the lipidic cubic phase crystallization approach and microED strategy and solved the structure from LCP-embedded proteinase K microcrystals with the comparable high resolution to conventional crystallographic method.

It cannot be neglected that only very few portions of membrane proteins were able to be successfully crystallized for structure determination. Single particle cryoEM method allows the structural studies from protein molecules detour away from crystallization. An atomic resolution structure of the β1-AR bound with agonist in complex with Gs protein, with particle size of less than 200 kDa, was determined by cryoEM, reaching to an atomic resolution of 3.8 Å. The complex structure captured a fully active conformation and revealed the important mechanisms of how the agonist bound receptor activated Gs protein.

These technological developments provide more opportunities to the structural biology community to discover mechanisms underlying such complicated machinery network, which would eventually benefit the structure-based drug discovery.
ContributorsZhu, Lan, Ph.D (Author) / Liu, Wei (Thesis advisor) / Mills, Jeremy (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2019
157975-Thumbnail Image.png
Description
Transient receptor potential vanilloid member 1 (TRPV1) is a membrane protein ion channel that functions as a heat and capsaicin receptor. In addition to activation by hot temperature and vanilloid compounds such as capsaicin, TRPV1 is modulated by various stimuli including acidic pH, endogenous lipids, diverse biological and synthetic chemical

Transient receptor potential vanilloid member 1 (TRPV1) is a membrane protein ion channel that functions as a heat and capsaicin receptor. In addition to activation by hot temperature and vanilloid compounds such as capsaicin, TRPV1 is modulated by various stimuli including acidic pH, endogenous lipids, diverse biological and synthetic chemical ligands, and modulatory proteins. Due to its sensitivity to noxious stimuli such as high temperature and pungent chemicals, there has been significant evidence that TRPV1 participates in a variety of human physiological and pathophysiological pathways, raising the potential of TRPV1 as an attractive therapeutic target. However, the polymodal nature of TRPV1 function has complicated clinical application because the TRPV1 activation mechanisms from different modes have generally been enigmatic. Consequently, tremendous efforts have put into dissecting the mechanisms of different activation modes, but numerous questions remain to be answered.

The studies conducted in this dissertation probed the role of the S1-S4 membrane domain in temperature and ligand activation of human TRPV1. Temperature-dependent solution nuclear magnetic resonance (NMR) spectroscopy for thermodynamic and mechanistic studies of the S1-S4 domain. From these results, a potential temperature sensing mechanism of TRPV1, initiated from the S1-S4 domain, was proposed. Additionally, direct binding of various ligands to the S1-S4 domain were used to ascertain the interaction site and the affinities (Kd) of various ligands to this domain. These results are the first to study the isolated S1-S4 domain of human TRPV1 and many results indicate that the S1-S4 domain is crucial for both temperature-sensing and is the general receptor binding site central to chemical activation.
ContributorsKim, Minjoo (Author) / Van Horn, Wade D (Thesis advisor) / Wang, Xu (Committee member) / Liu, Wei (Committee member) / Arizona State University (Publisher)
Created2019