Matching Items (384)
151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsMatthews, Eyona (Performer) / Yoo, Katie Jihye (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
ContributorsHoeckley, Stephanie (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-24
ContributorsMcClain, Katelyn (Performer) / Buringrud, Deanna (Contributor) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
ContributorsHur, Jiyoun (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
136726-Thumbnail Image.png
DescriptionThis is a project to create an electric field sensing system which is fully portable. This system should provide accurate electric field readings from transmission lines allowing abstraction to find the voltage on the transmission line.
ContributorsScowen, Kegan (Co-author) / Vora, Sandeep (Co-author) / Ye, Weidong (Co-author) / Sciacca, Jacob (Co-author) / Allee, David (Thesis director) / Karady, George (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Electrical Engineering Program (Contributor)
Created2014-12
136219-Thumbnail Image.png
Description
This project details a magnetic field detection system that can be mounted on an unmanned aerial vehicle (UAV). The system is comprised of analog circuitry to detect and process the magnetic signals, digital circuitry to sample and store the data outputted from the analog front end, and finally a UAV

This project details a magnetic field detection system that can be mounted on an unmanned aerial vehicle (UAV). The system is comprised of analog circuitry to detect and process the magnetic signals, digital circuitry to sample and store the data outputted from the analog front end, and finally a UAV to carry and mobilize the electronic parts. The system should be able to sense magnetic fields from power transmission lines, enabling the determination of whether or not current is running through the power line.
ContributorsTheoharatos, Dimitrios (Co-author) / Brazones, Ryan (Co-author) / Pagaduan, Patrick (Co-author) / Allee, David (Thesis director) / Karady, George (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
136996-Thumbnail Image.png
Description
The emerging market for unmanned aerial vehicles, or UAV's, demands the development of effective design tools for small-scale aircraft. This research seeks to validate a previously developed drag build-up method for small air vehicles. Using the method, a drag prediction was made for an off-the-shelf, remotely controlled aircraft. The Oswald

The emerging market for unmanned aerial vehicles, or UAV's, demands the development of effective design tools for small-scale aircraft. This research seeks to validate a previously developed drag build-up method for small air vehicles. Using the method, a drag prediction was made for an off-the-shelf, remotely controlled aircraft. The Oswald efficiency was predicted to be 0.852. Flight tests were then conducted using the RC plane, and the aircraft performance data was compared with the predicted performance data. Although there were variations in the data due to flight conditions and equipment, the drag build up method was capable of predicting the aircraft's drag. The experimental Oswald efficiency was found to be 0.863 with an error of 1.27%. As for the CDp the prediction of 0.0477 was comparable to the experimental value of 0.0424. Moving forward this method can be used to create conceptual designs of UAV's to explore the most efficient designs, without the need to build a model.
ContributorsGavin, Tyler Joseph (Author) / Wells, Valana (Thesis director) / Garrett, Fred (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
ContributorsZaleski, Kimberly (Contributor) / Kazarian, Trevor (Performer) / Ryan, Russell (Performer) / IN2ATIVE (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-28
134093-Thumbnail Image.png
Description
Remotely controlled flying vehicles such as UAVs are becoming more common due to decreases in material costs and increases in performance of components. Radio control link options, however, have not improved at the same rate as airframes, motors, flight controllers, etc [HobbyKing]. Most UAVs require a radio link, often at

Remotely controlled flying vehicles such as UAVs are becoming more common due to decreases in material costs and increases in performance of components. Radio control link options, however, have not improved at the same rate as airframes, motors, flight controllers, etc [HobbyKing]. Most UAVs require a radio link, often at 2.4 GHz, for flight control, and a second link at 915 MHz for telemetry data transmission [HobbyKing]. Occasionally there is also a video link at either 2.4 GHz or 5.8 GHz. Having multiple transmitters increase power usage from the limited battery reserve that the UAV carries. It also increases weight and space used on the airframe. In addition, the 2.4 GHz band is often congested [ISM Congestion] and does not provide as great a range for a given transmission power as lower frequencies do [Wu]. Attempting to reduce space and weight, power consumption, and simplify design, while increasing control and telemetry range requires the design, testing, and implementation of a radio link that handles both real-time flight control and telemetry with the same transceiver. Only the flight control and telemetry will be addressed in this project. Merging and/or improving the video link will not be tackled at this time in order to simplify project goals to fit inside time constraints. The new radio link system will be verified for functionality then power and range test data will be gathered to determine how effective it is.
ContributorsPortillo-Wightman, Gabrielle Raquel (Author) / Goryll, Michael (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12