Matching Items (2)
Filtering by

Clear all filters

134079-Thumbnail Image.png
Description
This project is a full integrated development environment implementing the LEGv8 assembly language standard, to be used in classroom settings. The LEGv8 assembly language is defined by the ARM edition of "Computer Organization and Design: The Hardware/Software Interface" by David A. Patterson and John L. Hennessy as a more approachable

This project is a full integrated development environment implementing the LEGv8 assembly language standard, to be used in classroom settings. The LEGv8 assembly language is defined by the ARM edition of "Computer Organization and Design: The Hardware/Software Interface" by David A. Patterson and John L. Hennessy as a more approachable alternative to the full ARMv8 instruction set. The MIPS edition of that same book is used in the Computer Organization course at ASU. This class makes heavy use of the "MARS" MIPS simulator, which allows students to write and run their own MIPS assembly programs. Writing assembly language programs is a key component of the course, as assembly programs have many design difficulties as compared to a high-level language. This project is a fork of the MARS project. The interface and functionality remain largely the same aside from the change to supporting the LEGv8 syntax and instruction set. Faculty used to the MARS environment from teaching Computer Organization should only have to adjust to the new language standard, as the editor and environment will be familiar. The available instructions are basic arithmetic/logical operations, memory interaction, and flow control. Both floating-point and integer operations are supported, with limited support of conditional execution. Only branches can be conditionally executed, per LEGv8. Directives remain in the format supported by MARS, as documentation on ARM-style directives is both sparse and agreeable to this standard. The operating system functions supported by the MARS simulator also remain, as there is no generally standardized requirements for operating system interactions.
ContributorsWhite, Josiah Jeremiah (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134100-Thumbnail Image.png
Description
Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to

Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to play music as they hear it in their head, and refining the user's sense of rhythm. Several different features were included to achieve this such as a score, different levels, a demo feature, and a metronome. The game was tested for its ability to teach and for its overall enjoyability by using a small sample group. Most participants of the sample group noted that they felt as if their sense of rhythm and drumming skill level would improve by playing the game. Through the findings of this project, it can be concluded that while it should not be considered as a complete replacement for traditional instruction, a virtual environment can be successfully used as a learning aid and practicing tool.
ContributorsDinapoli, Allison (Co-author) / Tuznik, Richard (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12