Matching Items (34)
Filtering by

Clear all filters

152291-Thumbnail Image.png
Description
Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a

Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period. Understanding how this latency affects spatial spread of rabies in wildlife is the concern of chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected (SEI) model and a delayed diffusive susceptible-infected (SI) model are constructed to describe the same epidemic process -- rabies spread in foxes. For the delayed diffusive model a non-local infection term with delay is resulted from modeling the dispersal during incubation stage. Comparison is made regarding minimum traveling wave speeds of the two models, which are verified using numerical experiments. In chapter 3, starting with two Kermack and McKendrick's models where infectivity, death rate and diffusion rate of infected individuals can depend on the age of infection, the asymptotic speed of spread $c^\ast$ for the cumulated force of infection can be analyzed. For the special case of fixed incubation period, the asymptotic speed of spread is governed by the same integral equation for both models. Although explicit solutions for $c^\ast$ are difficult to obtain, assuming that diffusion coefficient of incubating animals is small, $c^\ast$ can be estimated in terms of model parameter values. Chapter 4 considers the implementation of realistic landscape in simulation of rabies spread in skunks and bats in northeast Texas. The Finite Element Method (FEM) is adopted because the irregular shapes of realistic landscape naturally lead to unstructured grids in the spatial domain. This implementation leads to a more accurate description of skunk rabies cases distributions.
ContributorsLiu, Hao (Author) / Kuang, Yang (Thesis advisor) / Jackiewicz, Zdzislaw (Committee member) / Lanchier, Nicolas (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2013
152943-Thumbnail Image.png
Description
In a 2004 paper, John Nagy raised the possibility of the existence of a hypertumor \emph{i.e.}, a focus of aggressively reproducing parenchyma cells that invade part or all of a tumor. His model used a system of nonlinear ordinary differential equations to find a suitable set of conditions for which

In a 2004 paper, John Nagy raised the possibility of the existence of a hypertumor \emph{i.e.}, a focus of aggressively reproducing parenchyma cells that invade part or all of a tumor. His model used a system of nonlinear ordinary differential equations to find a suitable set of conditions for which these hypertumors exist. Here that model is expanded by transforming it into a system of nonlinear partial differential equations with diffusion, advection, and a free boundary condition to represent a radially symmetric tumor growth. Two strains of parenchymal cells are incorporated; one forming almost the entirety of the tumor while the much more aggressive strain

appears in a smaller region inside of the tumor. Simulations show that if the aggressive strain focuses its efforts on proliferating and does not contribute to angiogenesis signaling when in a hypoxic state, a hypertumor will form. More importantly, this resultant aggressive tumor is paradoxically prone to extinction and hypothesize is the cause of necrosis in many vascularized tumors.
ContributorsAlvarez, Roberto L (Author) / Milner, Fabio A (Thesis advisor) / Nagy, John D. (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Mahalov, Alex (Committee member) / Smith, Hal (Committee member) / Arizona State University (Publisher)
Created2014
152845-Thumbnail Image.png
Description
There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. This fast growing theory provides new constraints and mechanisms that can be formulated into mathematical models. Stoichiometric models incorporate the effects of both food quantity and food quality into a single framework

There has been important progress in understanding ecological dynamics through the development of the theory of ecological stoichiometry. This fast growing theory provides new constraints and mechanisms that can be formulated into mathematical models. Stoichiometric models incorporate the effects of both food quantity and food quality into a single framework that produce rich dynamics. While the effects of nutrient deficiency on consumer growth are well understood, recent discoveries in ecological stoichiometry suggest that consumer dynamics are not only affected by insufficient food nutrient content (low phosphorus (P): carbon (C) ratio) but also by excess food nutrient content (high P:C). This phenomenon, known as the stoichiometric knife edge, in which animal growth is reduced not only by food with low P content but also by food with high P content, needs to be incorporated into mathematical models. Here we present Lotka-Volterra type models to investigate the growth response of Daphnia to algae of varying P:C ratios. Using a nonsmooth system of two ordinary differential equations (ODEs), we formulate the first model to incorporate the phenomenon of the stoichiometric knife edge. We then extend this stoichiometric model by mechanistically deriving and tracking free P in the environment. This resulting full knife edge model is a nonsmooth system of three ODEs. Bifurcation analysis and numerical simulations of the full model, that explicitly tracks phosphorus, leads to quantitatively different predictions than previous models that neglect to track free nutrients. The full model shows that the grazer population is sensitive to excess nutrient concentrations as a dynamical free nutrient pool induces extreme grazer population density changes. These modeling efforts provide insight on the effects of excess nutrient content on grazer dynamics and deepen our understanding of the effects of stoichiometry on the mechanisms governing population dynamics and the interactions between trophic levels.
ContributorsPeace, Angela (Author) / Kuang, Yang (Thesis advisor) / Elser, James J (Committee member) / Baer, Steven (Committee member) / Tang, Wenbo (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
153468-Thumbnail Image.png
Description
The phycologist, M. R. Droop, studied vitamin B12 limitation in the flagellate Monochrysis lutheri and concluded that its specific growth rate depended on the concentration of the vitamin within the cell; i.e. the cell quota of the vitamin B12. The Droop model provides a mathematical expression to link growth rate

The phycologist, M. R. Droop, studied vitamin B12 limitation in the flagellate Monochrysis lutheri and concluded that its specific growth rate depended on the concentration of the vitamin within the cell; i.e. the cell quota of the vitamin B12. The Droop model provides a mathematical expression to link growth rate to the intracellular concentration of a limiting nutrient. Although the Droop model has been an important modeling tool in ecology, it has only recently been applied to study cancer biology. Cancer cells live in an ecological setting, interacting and competing with normal and other cancerous cells for nutrients and space, and evolving and adapting to their environment. Here, the Droop equation is used to model three cancers.

First, prostate cancer is modeled, where androgen is considered the limiting nutrient since most tumors depend on androgen for proliferation and survival. The model's accuracy for predicting the biomarker for patients on intermittent androgen deprivation therapy is tested by comparing the simulation results to clinical data as well as to an existing simpler model. The results suggest that a simpler model may be more beneficial for a predictive use, although further research is needed in this field prior to implementing mathematical models as a predictive method in a clinical setting.

Next, two chronic myeloid leukemia models are compared that consider Imatinib treatment, a drug that inhibits the constitutively active tyrosine kinase BCR-ABL. Both models describe the competition of leukemic and normal cells, however the first model also describes intracellular dynamics by considering BCR-ABL as the limiting nutrient. Using clinical data, the differences in estimated parameters between the models and the capacity for each model to predict drug resistance are analyzed.

Last, a simple model is presented that considers ovarian tumor growth and tumor induced angiogenesis, subject to on and off anti-angiogenesis treatment. In this environment, the cell quota represents the intracellular concentration of necessary nutrients provided through blood supply. Mathematical analysis of the model is presented and model simulation results are compared to pre-clinical data. This simple model is able to fit both on- and off-treatment data using the same biologically relevant parameters.
ContributorsEverett, Rebecca Anne (Author) / Kuang, Yang (Thesis advisor) / Nagy, John (Committee member) / Milner, Fabio (Committee member) / Crook, Sharon (Committee member) / Jackiewicz, Zdzislaw (Committee member) / Arizona State University (Publisher)
Created2015
153262-Thumbnail Image.png
Description
In 1968, phycologist M.R. Droop published his famous discovery on the functional relationship between growth rate and internal nutrient status of algae in chemostat culture. The simple notion that growth is directly dependent on intracellular nutrient concentration is useful for understanding the dynamics in many ecological systems. The cell quota

In 1968, phycologist M.R. Droop published his famous discovery on the functional relationship between growth rate and internal nutrient status of algae in chemostat culture. The simple notion that growth is directly dependent on intracellular nutrient concentration is useful for understanding the dynamics in many ecological systems. The cell quota in particular lends itself to ecological stoichiometry, which is a powerful framework for mathematical ecology. Three models are developed based on the cell quota principal in order to demonstrate its applications beyond chemostat culture.

First, a data-driven model is derived for neutral lipid synthesis in green microalgae with respect to nitrogen limitation. This model synthesizes several established frameworks in phycology and ecological stoichiometry. The model demonstrates how the cell quota is a useful abstraction for understanding the metabolic shift to neutral lipid production that is observed in certain oleaginous species.

Next a producer-grazer model is developed based on the cell quota model and nutrient recycling. The model incorporates a novel feedback loop to account for animal toxicity due to accumulation of nitrogen waste. The model exhibits rich, complex dynamics which leave several open mathematical questions.

Lastly, disease dynamics in vivo are in many ways analogous to those of an ecosystem, giving natural extensions of the cell quota concept to disease modeling. Prostate cancer can be modeled within this framework, with androgen the limiting nutrient and the prostate and cancer cells as competing species. Here the cell quota model provides a useful abstraction for the dependence of cellular proliferation and apoptosis on androgen and the androgen receptor. Androgen ablation therapy is often used for patients in biochemical recurrence or late-stage disease progression and is in general initially effective. However, for many patients the cancer eventually develops resistance months to years after treatment begins. Understanding how and predicting when hormone therapy facilitates evolution of resistant phenotypes has immediate implications for treatment. Cell quota models for prostate cancer can be useful tools for this purpose and motivate applications to other diseases.
ContributorsPacker, Aaron (Author) / Kuang, Yang (Thesis advisor) / Nagy, John (Committee member) / Smith, Hal (Committee member) / Kostelich, Eric (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
153290-Thumbnail Image.png
Description
Pre-Exposure Prophylaxis (PrEP) is any medical or public health procedure used before exposure to the disease causing agent, its purpose is to prevent, rather than treat or cure a disease. Most commonly, PrEP refers to an experimental HIV-prevention strategy that would use antiretrovirals to protect HIV-negative people from HIV infection.

Pre-Exposure Prophylaxis (PrEP) is any medical or public health procedure used before exposure to the disease causing agent, its purpose is to prevent, rather than treat or cure a disease. Most commonly, PrEP refers to an experimental HIV-prevention strategy that would use antiretrovirals to protect HIV-negative people from HIV infection. A deterministic mathematical model of HIV transmission is developed to evaluate the public-health impact of oral PrEP interventions, and to compare PrEP effectiveness with respect to different evaluation methods. The effects of demographic, behavioral, and epidemic parameters on the PrEP impact are studied in a multivariate sensitivity analysis. Most of the published models on HIV intervention impact assume that the number of individuals joining the sexually active population per year is constant or proportional to the total population. In the second part of this study, three models are presented and analyzed to study the PrEP intervention, with constant, linear, and logistic recruitment rates. How different demographic assumptions can affect the evaluation of PrEP is studied. When provided with data, often least square fitting or similar approaches can be used to determine a single set of approximated parameter values that make the model fit the data best. However, least square fitting only provides point estimates and does not provide information on how strongly the data supports these particular estimates. Therefore, in the third part of this study, Bayesian parameter estimation is applied on fitting ODE model to the related HIV data. Starting with a set of prior distributions for the parameters as initial guess, Bayes' formula can be applied to obtain a set of posterior distributions for the parameters which makes the model fit the observed data best. Evaluating the posterior distribution often requires the integration of high-dimensional functions, which is usually difficult to calculate numerically. Therefore, the Markov chain Monte Carlo (MCMC) method is used to approximate the posterior distribution.
ContributorsZhao, Yuqin (Author) / Kuang, Yang (Thesis advisor) / Taylor, Jesse (Committee member) / Armbruster, Dieter (Committee member) / Tang, Wenbo (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
150711-Thumbnail Image.png
Description
In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances

In vertebrate outer retina, changes in the membrane potential of horizontal cells affect the calcium influx and glutamate release of cone photoreceptors via a negative feedback. This feedback has a number of important physiological consequences. One is called background-induced flicker enhancement (BIFE) in which the onset of dim background enhances the center flicker response of horizontal cells. The underlying mechanism for the feedback is still unclear but competing hypotheses have been proposed. One is the GABA hypothesis, which states that the feedback is mediated by gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter released from horizontal cells. Another is the ephaptic hypothesis, which contends that the feedback is non-GABAergic and is achieved through the modulation of electrical potential in the intersynaptic cleft between cones and horizontal cells. In this study, a continuum spine model of the cone-horizontal cell synaptic circuitry is formulated. This model, a partial differential equation system, incorporates both the GABA and ephaptic feedback mechanisms. Simulation results, in comparison with experiments, indicate that the ephaptic mechanism is necessary in order for the model to capture the major spatial and temporal dynamics of the BIFE effect. In addition, simulations indicate that the GABA mechanism may play some minor modulation role.
ContributorsChang, Shaojie (Author) / Baer, Steven M. (Thesis advisor) / Gardner, Carl L (Thesis advisor) / Crook, Sharon M (Committee member) / Kuang, Yang (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2012
149993-Thumbnail Image.png
Description
Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's

Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's inherent quality. However, at times, there may be cues in the upstream test data that, if detected, could serve to predict the likelihood of downstream failure or performance degradation induced by product use or environmental stresses. This study explores the use of downstream factory test data or product field reliability data to infer data mining or pattern recognition criteria onto manufacturing process or upstream test data by means of support vector machines (SVM) in order to provide reliability prediction models. In concert with a risk/benefit analysis, these models can be utilized to drive improvement of the product or, at least, via screening to improve the reliability of the product delivered to the customer. Such models can be used to aid in reliability risk assessment based on detectable correlations between the product test performance and the sources of supply, test stands, or other factors related to product manufacture. As an enhancement to the usefulness of the SVM or hyperplane classifier within this context, L-moments and the Western Electric Company (WECO) Rules are used to augment or replace the native process or test data used as inputs to the classifier. As part of this research, a generalizable binary classification methodology was developed that can be used to design and implement predictors of end-item field failure or downstream product performance based on upstream test data that may be composed of single-parameter, time-series, or multivariate real-valued data. Additionally, the methodology provides input parameter weighting factors that have proved useful in failure analysis and root cause investigations as indicators of which of several upstream product parameters have the greater influence on the downstream failure outcomes.
ContributorsMosley, James (Author) / Morrell, Darryl (Committee member) / Cochran, Douglas (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Roberts, Chell (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
150824-Thumbnail Image.png
Description
This thesis considers the application of basis pursuit to several problems in system identification. After reviewing some key results in the theory of basis pursuit and compressed sensing, numerical experiments are presented that explore the application of basis pursuit to the black-box identification of linear time-invariant (LTI) systems with both

This thesis considers the application of basis pursuit to several problems in system identification. After reviewing some key results in the theory of basis pursuit and compressed sensing, numerical experiments are presented that explore the application of basis pursuit to the black-box identification of linear time-invariant (LTI) systems with both finite (FIR) and infinite (IIR) impulse responses, temporal systems modeled by ordinary differential equations (ODE), and spatio-temporal systems modeled by partial differential equations (PDE). For LTI systems, the experimental results illustrate existing theory for identification of LTI FIR systems. It is seen that basis pursuit does not identify sparse LTI IIR systems, but it does identify alternate systems with nearly identical magnitude response characteristics when there are small numbers of non-zero coefficients. For ODE systems, the experimental results are consistent with earlier research for differential equations that are polynomials in the system variables, illustrating feasibility of the approach for small numbers of non-zero terms. For PDE systems, it is demonstrated that basis pursuit can be applied to system identification, along with a comparison in performance with another existing method. In all cases the impact of measurement noise on identification performance is considered, and it is empirically observed that high signal-to-noise ratio is required for successful application of basis pursuit to system identification problems.
ContributorsThompson, Robert C. (Author) / Platte, Rodrigo (Thesis advisor) / Gelb, Anne (Committee member) / Cochran, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
151128-Thumbnail Image.png
Description
This dissertation involves three problems that are all related by the use of the singular value decomposition (SVD) or generalized singular value decomposition (GSVD). The specific problems are (i) derivation of a generalized singular value expansion (GSVE), (ii) analysis of the properties of the chi-squared method for regularization parameter selection

This dissertation involves three problems that are all related by the use of the singular value decomposition (SVD) or generalized singular value decomposition (GSVD). The specific problems are (i) derivation of a generalized singular value expansion (GSVE), (ii) analysis of the properties of the chi-squared method for regularization parameter selection in the case of nonnormal data and (iii) formulation of a partial canonical correlation concept for continuous time stochastic processes. The finite dimensional SVD has an infinite dimensional generalization to compact operators. However, the form of the finite dimensional GSVD developed in, e.g., Van Loan does not extend directly to infinite dimensions as a result of a key step in the proof that is specific to the matrix case. Thus, the first problem of interest is to find an infinite dimensional version of the GSVD. One such GSVE for compact operators on separable Hilbert spaces is developed. The second problem concerns regularization parameter estimation. The chi-squared method for nonnormal data is considered. A form of the optimized regularization criterion that pertains to measured data or signals with nonnormal noise is derived. Large sample theory for phi-mixing processes is used to derive a central limit theorem for the chi-squared criterion that holds under certain conditions. Departures from normality are seen to manifest in the need for a possibly different scale factor in normalization rather than what would be used under the assumption of normality. The consequences of our large sample work are illustrated by empirical experiments. For the third problem, a new approach is examined for studying the relationships between a collection of functional random variables. The idea is based on the work of Sunder that provides mappings to connect the elements of algebraic and orthogonal direct sums of subspaces in a Hilbert space. When combined with a key isometry associated with a particular Hilbert space indexed stochastic process, this leads to a useful formulation for situations that involve the study of several second order processes. In particular, using our approach with two processes provides an independent derivation of the functional canonical correlation analysis (CCA) results of Eubank and Hsing. For more than two processes, a rigorous derivation of the functional partial canonical correlation analysis (PCCA) concept that applies to both finite and infinite dimensional settings is obtained.
ContributorsHuang, Qing (Author) / Eubank, Randall (Thesis advisor) / Renaut, Rosemary (Thesis advisor) / Cochran, Douglas (Committee member) / Gelb, Anne (Committee member) / Young, Dennis (Committee member) / Arizona State University (Publisher)
Created2012