Matching Items (134)

134351-Thumbnail Image.png

Mathematical Analysis of Photoreceptor Degeneration in Retinal Detachment

Description

The retina is the lining in the back of the eye responsible for vision. When light photons hits the retina, the photoreceptors within the retina respond by sending impulses to the optic nerve, which connects to the brain. If there

The retina is the lining in the back of the eye responsible for vision. When light photons hits the retina, the photoreceptors within the retina respond by sending impulses to the optic nerve, which connects to the brain. If there is injury to the eye or heredity retinal problems, this part can become detached. Detachment leads to loss of nutrients, such as oxygen and glucose, to the cells in the eye and causes cell death. Sometimes the retina is able to be surgically reattached. If the photoreceptor cells have not died and the reattachment is successful, then these cells are able to regenerate their outer segments (OS) which are essential for their functionality and vitality. In this work we will explore how the regrowth of the photoreceptor cells in a healthy eye after retinal detachment can lead to a deeper understanding of how eye cells take up nutrients and regenerate. This work uses a mathematical model for a healthy eye in conjunction with data for photoreceptors' regrowth and decay. The parameters for the healthy eye model are estimated from the data and the ranges of these parameter values are centered +/- 10\% away from these values are used for sensitivity analysis. Using parameter estimation and sensitivity analysis we can better understand how certain processes represented by these parameters change within the model as a result of retinal detachment. Having a deeper understanding for any sort of photoreceptor death and growth can be used by the greater scientific community to help with these currently irreversible conditions that lead to blindness, such as retinal detachment. The analysis in this work shows that maximizing the carrying capacity of the trophic pool and the rate of RDCVF, as well as minimizing nutrient withdrawal of the rods and the cones from the trophic pool results in both the most regrowth and least cell death in retinal detachment.

Contributors

Agent

Created

Date Created
2017-05

133983-Thumbnail Image.png

Jump Dynamics

Description

There are multiple mathematical models for alignment of individuals moving within a group. In a first class of models, individuals tend to relax their velocity toward the average velocity of other nearby neighbors. These types of models are motivated by

There are multiple mathematical models for alignment of individuals moving within a group. In a first class of models, individuals tend to relax their velocity toward the average velocity of other nearby neighbors. These types of models are motivated by the flocking behavior exhibited by birds. Another class of models have been introduced to describe rapid changes of individual velocity, referred to as jump, which better describes behavior of smaller agents (e.g. locusts, ants). In the second class of model, individuals will randomly choose to align with another nearby individual, matching velocities. There are several open questions concerning these two type of behavior: which behavior is the most efficient to create a flock (i.e. to converge toward the same velocity)? Will flocking still emerge when the number of individuals approach infinity? Analysis of these models show that, in the homogeneous case where all individuals are capable of interacting with each other, the variance of the velocities in both the jump model and the relaxation model decays to 0 exponentially for any nonzero number of individuals. This implies the individuals in the system converge to an absorbing state where all individuals share the same velocity, therefore individuals converge to a flock even as the number of individuals approach infinity. Further analysis focused on the case where interactions between individuals were determined by an adjacency matrix. The second eigenvalues of the Laplacian of this adjacency matrix (denoted ƛ2) provided a lower bound on the rate of decay of the variance. When ƛ2 is nonzero, the system is said to converge to a flock almost surely. Furthermore, when the adjacency matrix is generated by a random graph, such that connections between individuals are formed with probability p (where 01/N. ƛ2 is a good estimator of the rate of convergence of the system, in comparison to the value of p used to generate the adjacency matrix..

Contributors

Agent

Created

Date Created
2018-05

135327-Thumbnail Image.png

A New Numerical Method Based on Leapfrog for Atmospheric and Ocean Modeling

Description

A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to

A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to simulate the nonlinear evolution of twin tropical cyclones. The leapfrog scheme leads to computational modes in the solutions to highly nonlinear systems, and time-filters are often used to damp these modes. The proposed filter damps the computational modes without appreciably degrading the physical mode. Its performance in these metrics is superior to the second-order time-filtered leapfrog scheme developed by Robert and Asselin.

Contributors

Created

Date Created
2016-05

135434-Thumbnail Image.png

Computations on Parameterized Surfaces with Chebfun2

Description

Chebfun is a collection of algorithms and an open-source software system in object-oriented Matlab that extends familiar powerful methods of numerical computation involving numbers to continuous or piecewise-continuous functions. The success of this strategy is based on the mathematical fact

Chebfun is a collection of algorithms and an open-source software system in object-oriented Matlab that extends familiar powerful methods of numerical computation involving numbers to continuous or piecewise-continuous functions. The success of this strategy is based on the mathematical fact that smooth functions can be represented very efficiently by polynomial interpolation at Chebyshev points or by trigonometric interpolation at equispaced points for periodic functions. More recently, the system has been extended to handle bivariate functions and vector fields. These two new classes of objects are called Chebfun2 and Chebfun2v, respectively. We will show that Chebfun2 and Chebfun2v, and can be used to accurately and efficiently perform various computations on parametric surfaces in two or three dimensions, including path trajectories and mean and Gaussian curvatures. More advanced surface computations such as mean curvature flows are also explored. This is also the first work to use the newly implemented trigonometric representation, namely Trigfun, for computations on surfaces.

Contributors

Created

Date Created
2016-05

135987-Thumbnail Image.png

Designing concentration factors to detect jump discontinuities from non-uniform Fourier data

Description

Edge detection plays a significant role in signal processing and image reconstruction applications where it is used to identify important features in the underlying signal or image. In some of these applications, such as magnetic resonance imaging (MRI), data are

Edge detection plays a significant role in signal processing and image reconstruction applications where it is used to identify important features in the underlying signal or image. In some of these applications, such as magnetic resonance imaging (MRI), data are sampled in the Fourier domain. When the data are sampled uniformly, a variety of algorithms can be used to efficiently extract the edges of the underlying images. However, in cases where the data are sampled non-uniformly, such as in non-Cartesian MRI, standard inverse Fourier transformation techniques are no longer suitable. Methods exist for handling these types of sampling patterns, but are often ill-equipped for cases where data are highly non-uniform. This thesis further develops an existing approach to discontinuity detection, the use of concentration factors. Previous research shows that the concentration factor technique can successfully determine jump discontinuities in non-uniform data. However, as the distribution diverges further away from uniformity so does the efficacy of the identification. This thesis proposes a method for reverse-engineering concentration factors specifically tailored to non-uniform data by employing the finite Fourier frame approximation. Numerical results indicate that this design method produces concentration factors which can more precisely identify jump locations than those previously developed.

Contributors

Agent

Created

Date Created
2015-05

152291-Thumbnail Image.png

Spatial spread of rabies in wildlife

Description

Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans.

Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period. Understanding how this latency affects spatial spread of rabies in wildlife is the concern of chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected (SEI) model and a delayed diffusive susceptible-infected (SI) model are constructed to describe the same epidemic process -- rabies spread in foxes. For the delayed diffusive model a non-local infection term with delay is resulted from modeling the dispersal during incubation stage. Comparison is made regarding minimum traveling wave speeds of the two models, which are verified using numerical experiments. In chapter 3, starting with two Kermack and McKendrick's models where infectivity, death rate and diffusion rate of infected individuals can depend on the age of infection, the asymptotic speed of spread $c^\ast$ for the cumulated force of infection can be analyzed. For the special case of fixed incubation period, the asymptotic speed of spread is governed by the same integral equation for both models. Although explicit solutions for $c^\ast$ are difficult to obtain, assuming that diffusion coefficient of incubating animals is small, $c^\ast$ can be estimated in terms of model parameter values. Chapter 4 considers the implementation of realistic landscape in simulation of rabies spread in skunks and bats in northeast Texas. The Finite Element Method (FEM) is adopted because the irregular shapes of realistic landscape naturally lead to unstructured grids in the spatial domain. This implementation leads to a more accurate description of skunk rabies cases distributions.

Contributors

Agent

Created

Date Created
2013

152362-Thumbnail Image.png

Time-dependent models of signal transduction networks

Description

Signaling cascades transduce signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three

Signaling cascades transduce signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three or four layers. Using singular perturbation theory, Michaelis-Menten type equations are derived for open enzymatic systems. When these equations are organized into a cascade, it is demonstrated that the output signal as a function of time becomes sigmoidal with the addition of more layers. Furthermore, it is shown that the activation time will speed up to a point, after which more layers become superfluous. It is shown that three layers create a reliable sigmoidal response progress curve from a wide variety of time-dependent signaling inputs arriving at the cell membrane, suggesting that natural selection may have favored signaling cascades as a parsimonious solution to the problem of generating switch-like behavior in a noisy environment.

Contributors

Agent

Created

Date Created
2013

137666-Thumbnail Image.png

Wada basins of attraction in diffeomorphic maps

Description

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In fact, it is possible to design a dynamical system for which the basins of attractions have this Wada property. In certain circumstances, both the Hénon map, a simple system, and the forced damped pendulum, a physical model, produce Wada basins.

Contributors

Created

Date Created
2013-05

153170-Thumbnail Image.png

A: kinetic approach to anomalous diffusion in biological trapping regions

Description

Advances in experimental techniques have allowed for investigation of molecular dynamics at ever smaller temporal and spatial scales. There is currently a varied and growing body of literature which demonstrates the phenomenon of \emph{anomalous diffusion} in physics, engineering, and biology.

Advances in experimental techniques have allowed for investigation of molecular dynamics at ever smaller temporal and spatial scales. There is currently a varied and growing body of literature which demonstrates the phenomenon of \emph{anomalous diffusion} in physics, engineering, and biology. In particular many diffusive type processes in the cell have been observed to follow a power law $\left \propto t^\alpha$ scaling of the mean square displacement of a particle. This contrasts with the expected linear behavior of particles undergoing normal diffusion. \emph{Anomalous sub-diffusion} ($\alpha<1$) has been attributed to factors such as cytoplasmic crowding of macromolecules, and trap-like structures in the subcellular environment non-linearly slowing the diffusion of molecules. Compared to normal diffusion, signaling molecules in these constrained spaces can be more concentrated at the source, and more diffuse at longer distances, potentially effecting the signalling dynamics. As diffusion at the cellular scale is a fundamental mechanism of cellular signaling and additionally is an implicit underlying mathematical assumption of many canonical models, a closer look at models of anomalous diffusion is warranted. Approaches in the literature include derivations of fractional differential diffusion equations (FDE) and continuous time random walks (CTRW). However these approaches are typically based on \emph{ad-hoc} assumptions on time- and space- jump distributions. We apply recent developments in asymptotic techniques on collisional kinetic equations to develop a FDE model of sub-diffusion due to trapping regions and investigate the nature of the space/time probability distributions assosiated with trapping regions. This approach both contrasts and compliments the stochastic CTRW approach by positing more physically realistic underlying assumptions on the motion of particles and their interactions with trapping regions, and additionally allowing varying assumptions to be applied individually to the traps and particle kinetics.

Contributors

Agent

Created

Date Created
2014

154488-Thumbnail Image.png

Evolutionary games as interacting particle systems

Description

This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer

This dissertation investigates the dynamics of evolutionary games based on the framework of interacting particle systems in which individuals are discrete, space is explicit, and dynamics are stochastic. Its focus is on 2-strategy games played on a d-dimensional integer lattice with a range of interaction M. An overview of related past work is given along with a summary of the dynamics in the mean-field model, which is described by the replicator equation. Then the dynamics of the interacting particle system is considered, first when individuals are updated according to the best-response update process and then the death-birth update process. Several interesting results are derived, and the differences between the interacting particle system model and the replicator dynamics are emphasized. The terms selfish and altruistic are defined according to a certain ordering of payoff parameters. In these terms, the replicator dynamics are simple: coexistence occurs if both strategies are altruistic; the selfish strategy wins if one strategy is selfish and the other is altruistic; and there is bistability if both strategies are selfish. Under the best-response update process, it is shown that there is no bistability region. Instead, in the presence of at least one selfish strategy, the most selfish strategy wins, while there is still coexistence if both strategies are altruistic. Under the death-birth update process, it is shown that regardless of the range of interactions and the dimension, regions of coexistence and bistability are both reduced. Additionally, coexistence occurs in some parameter region for large enough interaction ranges. Finally, in contrast with the replicator equation and the best-response update process, cooperators can win in the prisoner's dilemma for the death-birth process in one-dimensional nearest-neighbor interactions.

Contributors

Agent

Created

Date Created
2016