Matching Items (116)

134351-Thumbnail Image.png

Mathematical Analysis of Photoreceptor Degeneration in Retinal Detachment

Description

The retina is the lining in the back of the eye responsible for vision. When light photons hits the retina, the photoreceptors within the retina respond by sending impulses to

The retina is the lining in the back of the eye responsible for vision. When light photons hits the retina, the photoreceptors within the retina respond by sending impulses to the optic nerve, which connects to the brain. If there is injury to the eye or heredity retinal problems, this part can become detached. Detachment leads to loss of nutrients, such as oxygen and glucose, to the cells in the eye and causes cell death. Sometimes the retina is able to be surgically reattached. If the photoreceptor cells have not died and the reattachment is successful, then these cells are able to regenerate their outer segments (OS) which are essential for their functionality and vitality. In this work we will explore how the regrowth of the photoreceptor cells in a healthy eye after retinal detachment can lead to a deeper understanding of how eye cells take up nutrients and regenerate. This work uses a mathematical model for a healthy eye in conjunction with data for photoreceptors' regrowth and decay. The parameters for the healthy eye model are estimated from the data and the ranges of these parameter values are centered +/- 10\% away from these values are used for sensitivity analysis. Using parameter estimation and sensitivity analysis we can better understand how certain processes represented by these parameters change within the model as a result of retinal detachment. Having a deeper understanding for any sort of photoreceptor death and growth can be used by the greater scientific community to help with these currently irreversible conditions that lead to blindness, such as retinal detachment. The analysis in this work shows that maximizing the carrying capacity of the trophic pool and the rate of RDCVF, as well as minimizing nutrient withdrawal of the rods and the cones from the trophic pool results in both the most regrowth and least cell death in retinal detachment.

Contributors

Agent

Created

Date Created
  • 2017-05

135056-Thumbnail Image.png

Reddit Predicts Swings in the Stock Market: r/WorldNews and Using Machine Learning to Predict Changes in Stock Price

Description

In this paper, I will show that news headlines of global events can predict changes in stock price by using Machine Learning and eight years of data from r/WorldNews, a

In this paper, I will show that news headlines of global events can predict changes in stock price by using Machine Learning and eight years of data from r/WorldNews, a popular forum on Reddit.com. My data is confined to the top 25 daily posts on the forum, and due to the implicit filtering mechanism in the online community, these 25 posts are representative of the most popular news headlines and influential global events of the day. Hence, these posts shine a light on how large-scale social and political events affect the stock market. Using a Logistic Regression and a Naive Bayes classifier, I am able to predict with approximately 85% accuracy a binary change in stock price using term-feature vectors gathered from the news headlines. The accuracy, precision and recall results closely rival the best models in this field of research. In addition to the results, I will also describe the mathematical underpinnings of the two models; preceded by a general investigation of the intersection between the multiple academic disciplines related to this project. These range from social to computer science and from statistics to philosophy. The goal of this additional discussion is to further illustrate the interdisciplinary nature of the research and hopefully inspire a non-monolithic mindset when further investigations are pursued.

Contributors

Created

Date Created
  • 2016-12

133983-Thumbnail Image.png

Jump Dynamics

Description

There are multiple mathematical models for alignment of individuals moving within a group. In a first class of models, individuals tend to relax their velocity toward the average velocity of

There are multiple mathematical models for alignment of individuals moving within a group. In a first class of models, individuals tend to relax their velocity toward the average velocity of other nearby neighbors. These types of models are motivated by the flocking behavior exhibited by birds. Another class of models have been introduced to describe rapid changes of individual velocity, referred to as jump, which better describes behavior of smaller agents (e.g. locusts, ants). In the second class of model, individuals will randomly choose to align with another nearby individual, matching velocities. There are several open questions concerning these two type of behavior: which behavior is the most efficient to create a flock (i.e. to converge toward the same velocity)? Will flocking still emerge when the number of individuals approach infinity? Analysis of these models show that, in the homogeneous case where all individuals are capable of interacting with each other, the variance of the velocities in both the jump model and the relaxation model decays to 0 exponentially for any nonzero number of individuals. This implies the individuals in the system converge to an absorbing state where all individuals share the same velocity, therefore individuals converge to a flock even as the number of individuals approach infinity. Further analysis focused on the case where interactions between individuals were determined by an adjacency matrix. The second eigenvalues of the Laplacian of this adjacency matrix (denoted ƛ2) provided a lower bound on the rate of decay of the variance. When ƛ2 is nonzero, the system is said to converge to a flock almost surely. Furthermore, when the adjacency matrix is generated by a random graph, such that connections between individuals are formed with probability p (where 01/N. ƛ2 is a good estimator of the rate of convergence of the system, in comparison to the value of p used to generate the adjacency matrix..

Contributors

Agent

Created

Date Created
  • 2018-05

135987-Thumbnail Image.png

Designing concentration factors to detect jump discontinuities from non-uniform Fourier data

Description

Edge detection plays a significant role in signal processing and image reconstruction applications where it is used to identify important features in the underlying signal or image. In some of

Edge detection plays a significant role in signal processing and image reconstruction applications where it is used to identify important features in the underlying signal or image. In some of these applications, such as magnetic resonance imaging (MRI), data are sampled in the Fourier domain. When the data are sampled uniformly, a variety of algorithms can be used to efficiently extract the edges of the underlying images. However, in cases where the data are sampled non-uniformly, such as in non-Cartesian MRI, standard inverse Fourier transformation techniques are no longer suitable. Methods exist for handling these types of sampling patterns, but are often ill-equipped for cases where data are highly non-uniform. This thesis further develops an existing approach to discontinuity detection, the use of concentration factors. Previous research shows that the concentration factor technique can successfully determine jump discontinuities in non-uniform data. However, as the distribution diverges further away from uniformity so does the efficacy of the identification. This thesis proposes a method for reverse-engineering concentration factors specifically tailored to non-uniform data by employing the finite Fourier frame approximation. Numerical results indicate that this design method produces concentration factors which can more precisely identify jump locations than those previously developed.

Contributors

Agent

Created

Date Created
  • 2015-05

135327-Thumbnail Image.png

A New Numerical Method Based on Leapfrog for Atmospheric and Ocean Modeling

Description

A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the

A semi-implicit, fourth-order time-filtered leapfrog numerical scheme is investigated for accuracy and stability, and applied to several test cases, including one-dimensional advection and diffusion, the anelastic equations to simulate the Kelvin-Helmholtz instability, and the global shallow water spectral model to simulate the nonlinear evolution of twin tropical cyclones. The leapfrog scheme leads to computational modes in the solutions to highly nonlinear systems, and time-filters are often used to damp these modes. The proposed filter damps the computational modes without appreciably degrading the physical mode. Its performance in these metrics is superior to the second-order time-filtered leapfrog scheme developed by Robert and Asselin.

Contributors

Created

Date Created
  • 2016-05

135434-Thumbnail Image.png

Computations on Parameterized Surfaces with Chebfun2

Description

Chebfun is a collection of algorithms and an open-source software system in object-oriented Matlab that extends familiar powerful methods of numerical computation involving numbers to continuous or piecewise-continuous functions. The

Chebfun is a collection of algorithms and an open-source software system in object-oriented Matlab that extends familiar powerful methods of numerical computation involving numbers to continuous or piecewise-continuous functions. The success of this strategy is based on the mathematical fact that smooth functions can be represented very efficiently by polynomial interpolation at Chebyshev points or by trigonometric interpolation at equispaced points for periodic functions. More recently, the system has been extended to handle bivariate functions and vector fields. These two new classes of objects are called Chebfun2 and Chebfun2v, respectively. We will show that Chebfun2 and Chebfun2v, and can be used to accurately and efficiently perform various computations on parametric surfaces in two or three dimensions, including path trajectories and mean and Gaussian curvatures. More advanced surface computations such as mean curvature flows are also explored. This is also the first work to use the newly implemented trigonometric representation, namely Trigfun, for computations on surfaces.

Contributors

Created

Date Created
  • 2016-05

137666-Thumbnail Image.png

Wada basins of attraction in diffeomorphic maps

Description

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In fact, it is possible to design a dynamical system for which the basins of attractions have this Wada property. In certain circumstances, both the Hénon map, a simple system, and the forced damped pendulum, a physical model, produce Wada basins.

Contributors

Created

Date Created
  • 2013-05

158112-Thumbnail Image.png

Impact of Teaching an Interdisciplinary Course Introduction of Applied Mathematics for the Life and Social Sciences on High School Students' Skills and Attitudes Towards Mathematics in a JBMSHP Summer Program

Description

Research shows that the subject of mathematics, although revered, remains a source of trepidation for many individuals, as they find it difficult to form a connection between the work they

Research shows that the subject of mathematics, although revered, remains a source of trepidation for many individuals, as they find it difficult to form a connection between the work they do on paper and their work's practical applications. This research study describes the impact of teaching a challenging introductive applied mathematics course on high school students' skills and attitudes towards mathematics in a college Summer Program. In the analysis of my research data, I identified several emerging changes in skills and attitudes towards mathematics, skills that high-school students needed or developed when taking the mathematical modeling course. Results indicated that the applied mathematics course had a positive impact on several students' attitudes, in general, such as, self-confidence, meanings of what mathematics is, and their perceptions of what solutions are. It also had a positive impact on several skills, such as translating real-life situations to mathematics via flow diagrams, translating the models' solutions back from mathematics to the real world, and interpreting graphs. Students showed positive results when the context of their problems was applied or graphical, and fewer improvement on problems that were not. Research also indicated some negatives outcomes, a decrease in confidence for certain students, and persistent negative ways of thinking about graphs. Based on these findings, I make recommendations for teaching similar mathematical modeling at the pre-university level, to encourage the development of young students through educational, research and similar mentorship activities, to increase their inspiration and interest in mathematics, and possibly consider a variety of sciences, technology, engineering and mathematics-related (STEM) fields and careers.

Contributors

Agent

Created

Date Created
  • 2020

158092-Thumbnail Image.png

The Influence of Class Nonlinear Dynamics and Education on Socio-Economic Mobility

Description

The dissertation addresses questions tied in to the challenges posed by the impact of environmental factors on the nonlinear dynamics of social upward mobility. The proportion of educated individuals

The dissertation addresses questions tied in to the challenges posed by the impact of environmental factors on the nonlinear dynamics of social upward mobility. The proportion of educated individuals from various socio-economic backgrounds is used as a proxy for the environmental impact on the status quo state.

Chapter 1 carries out a review of the mobility models found in the literature and sets the economic context of this dissertation. Chapter 2 explores a simple model that considers poor and rich classes and the impact that educational success may have on altering mobility patterns. The role of the environment is modeled through the use of a modified version of the invasion/extinction model of Richard Levins. Chapter 3 expands the socio-economic classes to include a large middle class to study the role of social mobility in the presence of higher heterogeneity. Chapter 4 includes demographic growth and explores what would be the time scales needed to accelerate mobility. The dissertation asked how long it will take to increase by 22% the proportion of educated from the poor classes under demographic versus non-demographic growth conditions. Chapter 5 summarizes results and includes a discussion of results. It also explores ways of modeling the influence of nonlinear dynamics of mobility, via exogenous factors. Finally, Chapter 6 presents economic perspectives about the role of environmental influence on college success. The framework can be used to incorporate the impact of economic factors and social changes, such as unemployment, or gap between the haves and have nots. The dissertation shows that peer influence (poor influencing the poor) has a larger effect than class influence (rich influencing the poor). Additionally, more heterogeneity may ease mobility of groups but results depend on initial conditions. Finally, average well-being of the community and income disparities may improve over time. Finally, population growth may extend time scales needed to achieve a specific goal of educated poor.

Contributors

Agent

Created

Date Created
  • 2020

158884-Thumbnail Image.png

Understanding Cortical Neuron Dynamics through Simulation-Based Applications of Machine Learning

Description

It is increasingly common to see machine learning techniques applied in conjunction with computational modeling for data-driven research in neuroscience. Such applications include using machine learning for model development, particularly

It is increasingly common to see machine learning techniques applied in conjunction with computational modeling for data-driven research in neuroscience. Such applications include using machine learning for model development, particularly for optimization of parameters based on electrophysiological constraints. Alternatively, machine learning can be used to validate and enhance techniques for experimental data analysis or to analyze model simulation data in large-scale modeling studies, which is the approach I apply here. I use simulations of biophysically-realistic cortical neuron models to supplement a common feature-based technique for analysis of electrophysiological signals. I leverage these simulated electrophysiological signals to perform feature selection that provides an improved method for neuron-type classification. Additionally, I validate an unsupervised approach that extends this improved feature selection to discover signatures associated with neuron morphologies - performing in vivo histology in effect. The result is a simulation-based discovery of the underlying synaptic conditions responsible for patterns of extracellular signatures that can be applied to understand both simulation and experimental data. I also use unsupervised learning techniques to identify common channel mechanisms underlying electrophysiological behaviors of cortical neuron models. This work relies on an open-source database containing a large number of computational models for cortical neurons. I perform a quantitative data-driven analysis of these previously published ion channel and neuron models that uses information shared across models as opposed to information limited to individual models. The result is simulation-based discovery of model sub-types at two spatial scales which map functional relationships between activation/inactivation properties of channel family model sub-types to electrophysiological properties of cortical neuron model sub-types. Further, the combination of unsupervised learning techniques and parameter visualizations serve to integrate characterizations of model electrophysiological behavior across scales.

Contributors

Agent

Created

Date Created
  • 2020