Matching Items (9)
Filtering by

Clear all filters

151528-Thumbnail Image.png
Description
The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration

The heat transfer enhancements available from expanding the cross-section of a boiling microchannel are explored analytically and experimentally. Evaluation of the literature on critical heat flux in flow boiling and associated pressure drop behavior is presented with predictive critical heat flux (CHF) and pressure drop correlations. An optimum channel configuration allowing maximum CHF while reducing pressure drop is sought. A perturbation of the channel diameter is employed to examine CHF and pressure drop relationships from the literature with the aim of identifying those adequately general and suitable for use in a scenario with an expanding channel. Several CHF criteria are identified which predict an optimizable channel expansion, though many do not. Pressure drop relationships admit improvement with expansion, and no optimum presents itself. The relevant physical phenomena surrounding flow boiling pressure drop are considered, and a balance of dimensionless numbers is presented that may be of qualitative use. The design, fabrication, inspection, and experimental evaluation of four copper microchannel arrays of different channel expansion rates with R-134a refrigerant is presented. Optimum rates of expansion which maximize the critical heat flux are considered at multiple flow rates, and experimental results are presented demonstrating optima. The effect of expansion on the boiling number is considered, and experiments demonstrate that expansion produces a notable increase in the boiling number in the region explored, though no optima are observed. Significant decrease in the pressure drop across the evaporator is observed with the expanding channels, and no optima appear. Discussion of the significance of this finding is presented, along with possible avenues for future work.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Baer, Steven (Committee member) / Chamberlin, Ralph (Committee member) / Chen, Kangping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
150501-Thumbnail Image.png
Description
Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux

Recent literature indicates potential benefits in microchannel cooling if an inlet orifice is used to suppress pressure oscillations that develop under two-phase conditions. This study investigates the costs and benefits of using an adjustable microchannel inlet orifice. The focus is on orifice effect during steady-state boiling and critical heat flux (CHF) in the channels using R134a in a pumped refrigerant loop (PRL). To change orifice size, a dam controlled with a micrometer was placed in front of 31 parallel microchannels. Each channel had a hydraulic diameter of 0.235 mm and a length of 1.33 cm. For steady state two-phase conditions, mass fluxes of 300 kg m-2 s-1 and 600 kg m-2 s-1were investigated. For orifice sizes with a hydraulic diameter to unrestricted hydraulic diameter (Dh:Dh,ur) ratio less than 35 percent, oscillations were reduced and wall temperatures fell up to 1.5 °C. Critical heat flux data were obtained for 7 orifice sizes with mass fluxes from 186 kg m-2 s-1 to 847 kg m-2 s-1. For all mass fluxes and inlet conditions tested, CHF values for a Dh:Dh,ur ratio of 1.8 percent became increasingly lower (up to 37 W cm-2 less) than those obtained with larger orifices. An optimum orifice size with Dh:Dh,ur of 35 percent emerged, offering up to 5 W cm-2 increase in CHF over unrestricted conditions at the highest mass flux tested, 847 kg m-2 s-1. These improvements in cooling ability with inlet orifices in place under both steady-state and impending CHF conditions are modest, leading to the conclusion that inlet orifices are only mildly effective at improving heat transfer coefficients. Stability of the PRL used for experimentation was also studied and improved. A vapor compression cycle's (VCC) proportional, integral, and derivative controller was found to adversely affect stability within the PRL and cause premature CHF. Replacing the VCC with an ice water heat sink maintained steady pumped loop system pressures and mass flow rates. The ice water heat sink was shown to have energy cost savings over the use of a directly coupled VCC for removing heat from the PRL.
ContributorsOdom, Brent A (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Trimble, Steve (Committee member) / Tasooji, Amaneh (Committee member) / Holcomb, Don (Committee member) / Arizona State University (Publisher)
Created2012
149785-Thumbnail Image.png
Description
Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This

Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This thesis presents a theoretical-numerical study of a method to improve the heat rejection capability of a microchannel heat sink via expansion of the channel cross-section along the flow direction. The thermodynamic quality of the refrigerant increases during flow boiling, decreasing the density of the bulk coolant as it flows. This may effect pressure fluctuations in the channels, leading to nonuniform heat transfer and local dryout in regions exceeding CHF. This undesirable phenomenon is counteracted by permitting the cross-section of the microchannel to increase along the direction of flow, allowing more volume for the vapor. Governing equations are derived from a control-volume analysis of a single heated rectangular microchannel; the cross-section is allowed to expand in width and height. The resulting differential equations are solved numerically for a variety of channel expansion profiles and numbers of channels. The refrigerant is R-134a and channel parameters are based on a physical test bed in a related experiment. Significant improvement in CHF is possible with moderate area expansion. Minimal additional manufacturing costs could yield major gains in the utility of microchannel heat sinks. An optimum expansion rate occurred in certain cases, and alterations in the channel width are, in general, more effective at improving CHF than alterations in the channel height. Modest expansion in height enables small width expansions to be very effective.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011
157292-Thumbnail Image.png
Description
Autonomic closure is a new general methodology for subgrid closures in large eddy simulations that circumvents the need to specify fixed closure models and instead allows a fully- adaptive self-optimizing closure. The closure is autonomic in the sense that the simulation itself determines the optimal relation at each point and

Autonomic closure is a new general methodology for subgrid closures in large eddy simulations that circumvents the need to specify fixed closure models and instead allows a fully- adaptive self-optimizing closure. The closure is autonomic in the sense that the simulation itself determines the optimal relation at each point and time between any subgrid term and the variables in the simulation, through the solution of a local system identification problem. It is based on highly generalized representations of subgrid terms having degrees of freedom that are determined dynamically at each point and time in the simulation. This can be regarded as a very high-dimensional generalization of the dynamic approach used with some traditional prescribed closure models, or as a type of “data-driven” turbulence closure in which machine- learning methods are used with internal training data obtained at a test-filter scale at each point and time in the simulation to discover the local closure representation.

In this study, a priori tests were performed to develop accurate and efficient implementations of autonomic closure based on particular generalized representations and parameters associated with the local system identification of the turbulence state. These included the relative number of training points and bounding box size, which impact computational cost and generalizability of coefficients in the representation from the test scale to the LES scale. The focus was on studying impacts of these factors on the resulting accuracy and efficiency of autonomic closure for the subgrid stress. Particular attention was paid to the associated subgrid production field, including its structural features in which large forward and backward energy transfer are concentrated.

More than five orders of magnitude reduction in computational cost of autonomic closure was achieved in this study with essentially no loss of accuracy, primarily by using efficient frame-invariant forms for generalized representations that greatly reduce the number of degrees of freedom. The recommended form is a 28-coefficient representation that provides subgrid stress and production fields that are far more accurate in terms of structure and statistics than are traditional prescribed closure models.
ContributorsKshitij, Abhinav (Author) / Dahm, Werner J.A. (Thesis advisor) / Herrmann, Marcus (Committee member) / Hamlington, Peter E (Committee member) / Peet, Yulia (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2019
Description
The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four

The goal of this paper was to do an analysis of two-dimensional unsplit mass and momentum conserving Finite Volume Methods for Advection for Volume of Fluid Fields with interfaces and validating their rates of convergence. Specifically three unsplit transport methods and one split transport method were amalgamated individually with four Piece-wise Linear Reconstruction Schemes (PLIC) i.e. Unsplit Eulerian Advection (UEA) by Owkes and Desjardins (2014), Unsplit Lagrangian Advection (ULA) by Yang et al. (2010), Split Lagrangian Advection (SLA) by Scardovelli and Zaleski (2003) and Unsplit Averaged Eulerian-Lagrangian Advection (UAELA) with two Finite Difference Methods by Parker and Youngs (1992) and two Error Minimization Methods by Pilliod Jr and Puckett (2004). The observed order of accuracy was first order in all cases except when unsplit methods and error minimization methods were used consecutively in each iteration, which resulted in second-order accuracy on the shape error convergence. The Averaged Unsplit Eulerian-Lagrangian Advection (AUELA) did produce first-order accuracy but that was due to a temporal error in the numerical setup. The main unsplit methods, Unsplit Eulerian Advection (UEA) and Unsplit Lagrangian Advection (ULA), preserve mass and momentum and require geometric clipping to solve two-phase fluid flows. The Unsplit Lagrangian Advection (ULA) can allow for small divergence in the velocity field perhaps saving time on the iterative solver of the variable coefficient Poisson System.
ContributorsAnsari, Adil (M.S.) (Author) / Herrmann, Marcus (Thesis advisor) / Peet, Yulia (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2019
158238-Thumbnail Image.png
Description
Computability of spray flows is an important issue, from both fundamental and practical perspectives. Spray flows have important applications in fuel injection, agriculture, medical devices, and industrial processes such as spray cooling. For this reason, many efforts have been devoted to experimental, computational and some theoretical aspects of spray

Computability of spray flows is an important issue, from both fundamental and practical perspectives. Spray flows have important applications in fuel injection, agriculture, medical devices, and industrial processes such as spray cooling. For this reason, many efforts have been devoted to experimental, computational and some theoretical aspects of spray flows. In particular, primary atomization, the process of bulk liquid transitioning to small droplets, is a central and probably the most difficult aspect of spray flows. This thesis discusses developed methods, results, and needed improvements in the modeling of primary atomization using a predictive Sauter Mean Diameter (SMD) formula. Primary atomization for round injectors and simplex atomizers is modeled using a three-step procedure. For each spray geometry, a volume-of-fluid simulation is run to resolve the trajectory of the intact liquid core. Atomization criterion is applied to the volume-of-fluid velocity field to determine atomization sites. Local droplet size is predicted at the atomization sites using the quadratic formula for Sauter Mean Diameter. Droplets with the computed drop size are injected from the atomization sites and are tracked as point-particles. A User Defined Memory (UDM) code is employed to compute steady-state Sauter Mean Diameter statistics at locations corresponding to experimental interrogation locations. The resulting Sauter Mean Diameter, droplet trajectory, and droplet velocity are compared against experimental data to validate the computational protocol. This protocol can be implemented on coarse-grid, time-averaged simulations of spray flows, and produces convincing results when compared with experimental data for pressure-atomized sprays with and without swirl. This approach is general and can be adapted in any spray geometry for complete and efficient computations of spray flows.
ContributorsGreenlee, Benjamin (Author) / Lee, Taewoo (Thesis advisor) / Herrmann, Marcus (Committee member) / Kasbaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2020
187669-Thumbnail Image.png
Description
Advancements to a dual scale Large Eddy Simulation (LES) modeling approach for immiscible turbulent phase interfaces are presented. In the dual scale LES approach, a high resolution auxiliary grid, used to capture a fully resolved interface geometry realization, is linked to an LES grid that solves the filtered Navier-Stokes equations.

Advancements to a dual scale Large Eddy Simulation (LES) modeling approach for immiscible turbulent phase interfaces are presented. In the dual scale LES approach, a high resolution auxiliary grid, used to capture a fully resolved interface geometry realization, is linked to an LES grid that solves the filtered Navier-Stokes equations. Exact closure of the sub-filter interface terms is provided by explicitly filtering the fully resolved quantities from the auxiliary grid. Reconstructing a fully resolved velocity field to advance the phase interface requires modeling several sub-filter effects, including shear and accelerational instabilities and phase change. Two sub-filter models were developed to generate these sub-filter hydrodynamic instabilities: an Orr-Sommerfeld model and a Volume-of-Fluid (VoF) vortex sheet method. The Orr-Sommerfeld sub-filter model was found to be incompatible with the dual scale approach, since it is unable to generate interface rollup and a process to separate filtered and sub-filter scales could not be established. A novel VoF vortex sheet method was therefore proposed, since prior vortex methods have demonstrated interface rollup and following the LES methodology, the vortex sheet strength could be decomposed into its filtered and sub-filter components. In the development of the VoF vortex sheet method, it was tested with a variety of classical hydrodynamic instability problems, compared against prior work and linear theory, and verified using Direct Numerical Simulations (DNS). An LES consistent approach to coupling the VoF vortex sheet with the LES filtered equations is presented and compared against DNS. Finally, a sub-filter phase change model is proposed and assessed in the dual scale LES framework with an evaporating interface subjected to decaying homogeneous isotropic turbulence. Results are compared against DNS and the interplay between surface tension forces and evaporation are discussed.
ContributorsGoodrich, Austin Chase (Author) / Herrmann, Marcus (Thesis advisor) / Dahm, Werner (Committee member) / Kim, Jeonglae (Committee member) / Huang, Huei-Ping (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2023
158804-Thumbnail Image.png
Description
Autonomic closure is a recently-proposed subgrid closure methodology for large eddy simulation (LES) that replaces the prescribed subgrid models used in traditional LES closure with highly generalized representations of subgrid terms and solution of a local system identification problem that allows the simulation itself to determine the local relation between

Autonomic closure is a recently-proposed subgrid closure methodology for large eddy simulation (LES) that replaces the prescribed subgrid models used in traditional LES closure with highly generalized representations of subgrid terms and solution of a local system identification problem that allows the simulation itself to determine the local relation between each subgrid term and the resolved variables at every point and time. The present study demonstrates, for the first time, practical LES based on fully dynamic implementation of autonomic closure for the subgrid stress and the subgrid scalar flux. It leverages the inherent computational efficiency of tensorally-correct generalized representations in terms of parametric quantities, and uses the fundamental representation theory of Smith (1971) to develop complete and minimal tensorally-correct representations for the subgrid stress and scalar flux. It then assesses the accuracy of these representations via a priori tests, and compares with the corresponding accuracy from nonparametric representations and from traditional prescribed subgrid models. It then assesses the computational stability of autonomic closure with these tensorally-correct parametric representations, via forward simulations with a high-order pseudo-spectral code, including the extent to which any added stabilization is needed to ensure computational stability, and compares with the added stabilization needed in traditional closure with prescribed subgrid models. Further, it conducts a posteriori tests based on forward simulations of turbulent conserved scalar mixing with the same pseudo-spectral code, in which velocity and scalar statistics from autonomic closure with these representations are compared with corresponding statistics from traditional closure using prescribed models, and with corresponding statistics of filtered fields from direct numerical simulation (DNS). These comparisons show substantially greater accuracy from autonomic closure than from traditional closure. This study demonstrates that fully dynamic autonomic closure is a practical approach for LES that requires accuracy even at the smallest resolved scales.
ContributorsStallcup, Eric Warren (Author) / Dahm, Werner J.A. (Thesis advisor) / Herrmann, Marcus (Committee member) / Calhoun, Ronald (Committee member) / Kim, Jeonglae (Committee member) / Kostelich, Eric J. (Committee member) / Arizona State University (Publisher)
Created2020
158194-Thumbnail Image.png
Description
Compressible fluid flows involving multiple physical states of matter occur in both nature and technical applications such as underwater explosions and implosions, cavitation-induced bubble collapse in naval applications and Richtmyer-Meshkov type instabilities in inertial confinement fusion. Of particular interest is the atomization of fuels that enable shock-induced mixing of fuel

Compressible fluid flows involving multiple physical states of matter occur in both nature and technical applications such as underwater explosions and implosions, cavitation-induced bubble collapse in naval applications and Richtmyer-Meshkov type instabilities in inertial confinement fusion. Of particular interest is the atomization of fuels that enable shock-induced mixing of fuel and oxidizer in supersonic combustors. Due to low residence times and varying length scales, providing insight through physical experiments is both technically challenging and sometimes unfeasible. Numerical simulations can help provide detailed insight and aid in the engineering design of devices that can harness these physical phenomena.

In this research, computational methods were developed to accurately simulate phase interfaces in compressible fluid flows with a focus on targeting primary atomization. Novel numerical methods which treat the phase interface as a discontinuity, and as a smeared region were developed using low-dissipation, high-order schemes. The resulting methods account for the effects of compressibility, surface tension and viscosity. To aid with the varying length scales and high-resolution requirements found in atomization applications, an adaptive mesh refinement (AMR) framework is used to provide high-resolution only in regions of interest. The developed methods were verified with test cases involving strong shocks, high density ratios, surface tension effects and jumps in the equations of state, in one-, two- and three dimensions, obtaining good agreement with theoretical and experimental results. An application case of the primary atomization of a liquid jet injected into a Mach 2 supersonic crossflow of air is performed with the methods developed.
ContributorsKannan, Karthik (Author) / Herrmann, Marcus (Thesis advisor) / Huang, Huei-Ping (Committee member) / Lopez, Juan (Committee member) / Peet, Yulia (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020