Matching Items (4)
Filtering by

Clear all filters

150803-Thumbnail Image.png
Description
Structural features of canonical wall-bounded turbulent flows are described using several techniques, including proper orthogonal decomposition (POD). The canonical wall-bounded turbulent flows of channels, pipes, and flat-plate boundary layers include physics important to a wide variety of practical fluid flows with a minimum of geometric complications. Yet, significant questions remain

Structural features of canonical wall-bounded turbulent flows are described using several techniques, including proper orthogonal decomposition (POD). The canonical wall-bounded turbulent flows of channels, pipes, and flat-plate boundary layers include physics important to a wide variety of practical fluid flows with a minimum of geometric complications. Yet, significant questions remain for their turbulent motions' form, organization to compose very long motions, and relationship to vortical structures. POD extracts highly energetic structures from flow fields and is one tool to further understand the turbulence physics. A variety of direct numerical simulations provide velocity fields suitable for detailed analysis. Since POD modes require significant interpretation, this study begins with wall-normal, one-dimensional POD for a set of turbulent channel flows. Important features of the modes and their scaling are interpreted in light of flow physics, also leading to a method of synthesizing one-dimensional POD modes. Properties of a pipe flow simulation are then studied via several methods. The presence of very long streamwise motions is assessed using a number of statistical quantities, including energy spectra, which are compared to experiments. Further properties of energy spectra, including their relation to fictitious forces associated with mean Reynolds stress, are considered in depth. After reviewing salient features of turbulent structures previously observed in relevant experiments, structures in the pipe flow are examined in greater detail. A variety of methods reveal organization patterns of structures in instantaneous fields and their associated vortical structures. Properties of POD modes for a boundary layer flow are considered. Finally, very wide modes that occur when computing POD modes in all three canonical flows are compared. The results demonstrate that POD extracts structures relevant to characterizing wall-bounded turbulent flows. However, significant care is necessary in interpreting POD results, for which modes can be categorized according to their self-similarity. Additional analysis techniques reveal the organization of smaller motions in characteristic patterns to compose very long motions in pipe flows. The very large scale motions are observed to contribute large fractions of turbulent kinetic energy and Reynolds stress. The associated vortical structures possess characteristics of hairpins, but are commonly distorted from pristine hairpin geometries.
ContributorsBaltzer, Jon Ronald (Author) / Adrian, Ronald J (Thesis advisor) / Calhoun, Ronald (Committee member) / Gelb, Anne (Committee member) / Herrmann, Marcus (Committee member) / Squires, Kyle D (Committee member) / Arizona State University (Publisher)
Created2012
133957-Thumbnail Image.png
Description
Coherent vortices are ubiquitous structures in natural flows that affect mixing and transport of substances and momentum/energy. Being able to detect these coherent structures is important for pollutant mitigation, ecological conservation and many other aspects. In recent years, mathematical criteria and algorithms have been developed to extract these coherent structures

Coherent vortices are ubiquitous structures in natural flows that affect mixing and transport of substances and momentum/energy. Being able to detect these coherent structures is important for pollutant mitigation, ecological conservation and many other aspects. In recent years, mathematical criteria and algorithms have been developed to extract these coherent structures in turbulent flows. In this study, we will apply these tools to extract important coherent structures and analyze their statistical properties as well as their implications on kinematics and dynamics of the flow. Such information will aide representation of small-scale nonlinear processes that large-scale models of natural processes may not be able to resolve.
ContributorsCass, Brentlee Jerry (Author) / Tang, Wenbo (Thesis director) / Kostelich, Eric (Committee member) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155305-Thumbnail Image.png
Description
The central purpose of this work is to investigate the large-scale, coherent structures that exist in turbulent Rayleigh-Bénard convection (RBC) when the domain is large enough for the classical ”wind of turbulence” to break down. The study exclusively focuses on the structures that from when the RBC geometry is a

The central purpose of this work is to investigate the large-scale, coherent structures that exist in turbulent Rayleigh-Bénard convection (RBC) when the domain is large enough for the classical ”wind of turbulence” to break down. The study exclusively focuses on the structures that from when the RBC geometry is a cylinder. A series of visualization studies, Fourier analysis and proper orthogonal decomposition are employed to qualitatively and quantitatively inspect the large-scale structures’ length and time scales, spatial organization, and dynamic properties. The data in this study is generated by direct numerical simulation to resolve all the scales of turbulence in a 6.3 aspect-ratio cylinder at a Rayleigh number of 9.6 × 107 and Prandtl number of 6.7. Single and double point statistics are compared against experiments and several resolution criteria are examined to verify that the simulation has enough spatial and temporal resolution to adequately represent the physical system.

Large-scale structures are found to organize as roll-cells aligned along the cell’s side walls, with rays of vorticity pointing toward the core of the cell. Two different large- scale organizations are observed and these patterns are well described spatially and energetically by azimuthal Fourier modes with frequencies of 2 and 3. These Fourier modes are shown to be dominant throughout the entire domain, and are found to be the primary source for radial inhomogeneity by inspection of the energy spectra. The precision with which the azimuthal Fourier modes describe these large-scale structures shows that these structures influence a large range of length scales. Conversely, the smaller scale structures are found to be more sensitive to radial position within the Fourier modes showing a strong dependence on physical length scales.

Dynamics in the large-scale structures are observed including a transition in the global pattern followed by a net rotation about the central axis. The transition takes place over 10 eddy-turnover times and the subsequent rotation occurs at a rate of approximately 1.1 degrees per eddy-turnover. These time-scales are of the same order of magnitude as those seen in lower aspect-ratio RBC for similar events and suggests a similarity in dynamic events across different aspect-ratios.
ContributorsSakievich, Philip Sakievich (Author) / Peet, Yulia (Thesis advisor) / Adrian, Ronald (Committee member) / Squires, Kyle (Committee member) / Herrmann, Marcus (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2017
187669-Thumbnail Image.png
Description
Advancements to a dual scale Large Eddy Simulation (LES) modeling approach for immiscible turbulent phase interfaces are presented. In the dual scale LES approach, a high resolution auxiliary grid, used to capture a fully resolved interface geometry realization, is linked to an LES grid that solves the filtered Navier-Stokes equations.

Advancements to a dual scale Large Eddy Simulation (LES) modeling approach for immiscible turbulent phase interfaces are presented. In the dual scale LES approach, a high resolution auxiliary grid, used to capture a fully resolved interface geometry realization, is linked to an LES grid that solves the filtered Navier-Stokes equations. Exact closure of the sub-filter interface terms is provided by explicitly filtering the fully resolved quantities from the auxiliary grid. Reconstructing a fully resolved velocity field to advance the phase interface requires modeling several sub-filter effects, including shear and accelerational instabilities and phase change. Two sub-filter models were developed to generate these sub-filter hydrodynamic instabilities: an Orr-Sommerfeld model and a Volume-of-Fluid (VoF) vortex sheet method. The Orr-Sommerfeld sub-filter model was found to be incompatible with the dual scale approach, since it is unable to generate interface rollup and a process to separate filtered and sub-filter scales could not be established. A novel VoF vortex sheet method was therefore proposed, since prior vortex methods have demonstrated interface rollup and following the LES methodology, the vortex sheet strength could be decomposed into its filtered and sub-filter components. In the development of the VoF vortex sheet method, it was tested with a variety of classical hydrodynamic instability problems, compared against prior work and linear theory, and verified using Direct Numerical Simulations (DNS). An LES consistent approach to coupling the VoF vortex sheet with the LES filtered equations is presented and compared against DNS. Finally, a sub-filter phase change model is proposed and assessed in the dual scale LES framework with an evaporating interface subjected to decaying homogeneous isotropic turbulence. Results are compared against DNS and the interplay between surface tension forces and evaporation are discussed.
ContributorsGoodrich, Austin Chase (Author) / Herrmann, Marcus (Thesis advisor) / Dahm, Werner (Committee member) / Kim, Jeonglae (Committee member) / Huang, Huei-Ping (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2023