Matching Items (125)
Filtering by

Clear all filters

173925-Thumbnail Image.png
Description

Wilhelm Roux was a nineteenth-century experimental embryologist who was best known for pioneering Entwicklungsmechanik, or developmental mechanics. Roux was born in Jena, Germany, on 9 June 1850, the only son of Clotilde Baumbach and a university fencing master, F. A. Wilhelm Ludwig Roux. Roux described himself as an aloof child,

Wilhelm Roux was a nineteenth-century experimental embryologist who was best known for pioneering Entwicklungsmechanik, or developmental mechanics. Roux was born in Jena, Germany, on 9 June 1850, the only son of Clotilde Baumbach and a university fencing master, F. A. Wilhelm Ludwig Roux. Roux described himself as an aloof child, but when he was fourteen he cultivated a passion for science that was encouraged by the director at Oberrealschule in Meiningen. Roux attended the University of Jena in 1869, but his education was halted after the first year because of his service in the military during the Franco-Prussian War. When he returned from the war, he continued to take classes and was admitted into the University of Jena medical faculty. He passed his medical examination in 1877 and became a licensed doctor.

Created2009-07-22
173926-Thumbnail Image.png
Description

Carl Gottfried Hartman researched the reproductive physiology of opossums and rhesus monkeys. He was the first to extensively study the embryology and physiology of reproduction in opossums when little was known about this mammal. Hartman worked in Texas where opossums, the only marsupial that lives in North America, were abundant.

Carl Gottfried Hartman researched the reproductive physiology of opossums and rhesus monkeys. He was the first to extensively study the embryology and physiology of reproduction in opossums when little was known about this mammal. Hartman worked in Texas where opossums, the only marsupial that lives in North America, were abundant. The female opossum delivers her fetal opossums in her pouch, where one can easily observe their development. After studying opossums for thirteen years, Hartman investigated the reproductive physiology of rhesus monkeys, also known as macaques. This research led to the discovery of when ovulation occurs, as well as its relation to the human menstrual cycle. Later research on scientific methods of birth control relied heavily on Hartman 's discoveries about primate and human reproduction.

Created2011-11-01
173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
173887-Thumbnail Image.png
Description

Frank R. Lillie was born in Toronto, Canada, on 27 June 1870. His mother was Emily Ann Rattray and his father was George Waddell Little, an accountant and co-owner of a wholesale drug company. While in high school Lillie took up interests in entomology and paleontology but went

Frank R. Lillie was born in Toronto, Canada, on 27 June 1870. His mother was Emily Ann Rattray and his father was George Waddell Little, an accountant and co-owner of a wholesale drug company. While in high school Lillie took up interests in entomology and paleontology but went to the University of Toronto with the aim of studying ministry. He slowly became disillusioned with this career choice and decided to major in the natural sciences. It was during his senior year that he developed his lifelong interest in embryology. Graduating with a BA in 1891 Lillie then moved to the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, to work and study with Charles Otis Whitman, the founding director of the MBL. Lillie collected and studied cell lineage side-by-side with some of the most prominent embryologists of the time: Edmund B. Wilson, Edwin G. Conklin, and Aaron L. Treadwell. Along with his cell lineage studies, Whitman guided Lillie to work on the question of how blastomeres contributed to the formation of organs in fresh water clams.

Created2009-07-22
173889-Thumbnail Image.png
Description

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively

Samuel Randall Detwiler was an embryologist who studied neural development in embryos and vertebrate retinas. He discovered evidence for the relationship between somites and spinal ganglia, that transplanted limbs can be controlled by foreign ganglia, and the plasticity of ganglia in response to limb transplantations. He also extensively studied vertebrate retinas during and after embryonic development. Detwiler's work established many principles studied in later limb transplantation experiments and was identified by Viktor Hamburger as an important bridge between his and Ross Granville Harrison's research.

Created2007-11-01
173890-Thumbnail Image.png
Description

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served

Ernest Everett Just was an early twentieth century American experimental embryologist involved in research at the Marine Biological Laboratory (MBL) at Woods Hole, Massachusetts, and the Stazione Zoologica in Naples, Italy. Just was known for simple but elegant experiments that supported the "fertilizing" theory of Frank R. Lillie and served as an antagonist to Jacques Loeb's work with artificial parthenogenesis. Just's many experiments with marine invertebrates showed that the egg surface, or ectoplasm, plays an important role in the fertilization and development of eggs.

Created2010-06-16
173891-Thumbnail Image.png
Description

Edward B. Lewis studied embryonic development in Drosophila, including the discovery of the cis-trans test for recessive genes, and the identification of the bithorax complex and its role in development in Drosophila. He shared the 1995 Nobel Prize in Physiology or Medicine with Christiane Nüsslein-Volhard and Eric F. Wieschaus

Edward B. Lewis studied embryonic development in Drosophila, including the discovery of the cis-trans test for recessive genes, and the identification of the bithorax complex and its role in development in Drosophila. He shared the 1995 Nobel Prize in Physiology or Medicine with Christiane Nüsslein-Volhard and Eric F. Wieschaus for work on genetic control of early embryonic development.

Created2007-11-11
173893-Thumbnail Image.png
Description

Ricardo Hector Asch was born 26 October 1947 in Buenos Aires, Argentina, to a lawyer and French professor, Bertha, and a doctor and professor of surgery, Miguel. Asch's middle-class family lived among the largest Jewish community in Latin America, where a majority of males were professionals. After his graduation from

Ricardo Hector Asch was born 26 October 1947 in Buenos Aires, Argentina, to a lawyer and French professor, Bertha, and a doctor and professor of surgery, Miguel. Asch's middle-class family lived among the largest Jewish community in Latin America, where a majority of males were professionals. After his graduation from National College No. 3 Mariano Moreno in Buenos Aires, Asch worked as a teaching assistant in human reproduction and embryology at the University of Buenos Aires School of Medicine where he received his medical degree in 1971.

Created2009-06-10
173896-Thumbnail Image.png
Description

Caspar Friedrich Wolff is most famous for his 1759 doctoral dissertation, Theoria Generationis, in which he described embryonic development in both plants and animals as a process involving layers of cells, thereby refuting the accepted theory of preformation: the idea that organisms develop as a result of the unfolding of

Caspar Friedrich Wolff is most famous for his 1759 doctoral dissertation, Theoria Generationis, in which he described embryonic development in both plants and animals as a process involving layers of cells, thereby refuting the accepted theory of preformation: the idea that organisms develop as a result of the unfolding of form that is somehow present from the outset, as in a homunculus. This work generated a great deal of controversy and discussion at the time of its publication but was an integral move in the reemergence and acceptance of the theory of epigenesis.

Created2009-07-07
173899-Thumbnail Image.png
Description

Gavin de Beer was an English zoologist known for his contributions to evolution and embryology, in particular for showing the inadequacy of the germ layer theory as it was then proposed. He was born in London, England, on 1 November 1899, but was raised for his first thirteen years in

Gavin de Beer was an English zoologist known for his contributions to evolution and embryology, in particular for showing the inadequacy of the germ layer theory as it was then proposed. He was born in London, England, on 1 November 1899, but was raised for his first thirteen years in France where his father worked for a telegraph company. He entered Magdalen College, Oxford, in 1917 but his studies were soon interrupted by World War I. After serving in the military, he returned to Oxford where he studied under Edwin Goodrich. He graduated in 1922 but stayed on as a fellow of Merton College and to teach in the Zoology Department. He was the Jenkinson Memorial Lecturer between 1926 and 1938.

Created2010-06-02