Matching Items (6)
Filtering by

Clear all filters

152768-Thumbnail Image.png
Description
In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact

In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact patient safety and hospital revenue. Any time instrumentation or devices are not available or are not fit for use, patient safety and revenue can be negatively impacted. One step of the instrument reprocessing cycle is sterilization. Steam sterilization is the sterilization method used for the majority of surgical instruments and is preferred to immediate use steam sterilization (IUSS) because terminally sterilized items can be stored until needed. IUSS Items must be used promptly and cannot be stored for later use. IUSS is intended for emergency situations and not as regular course of action. Unfortunately, IUSS is used to compensate for inadequate inventory levels, scheduling conflicts, and miscommunications. If IUSS is viewed as an adverse event, then monitoring IUSS incidences can help healthcare organizations meet patient safety goals and financial goals along with aiding in process improvement efforts. This work recommends statistical process control methods to IUSS incidents and illustrates the use of control charts for IUSS occurrences through a case study and analysis of the control charts for data from a health care provider. Furthermore, this work considers the application of data mining methods to IUSS occurrences and presents a representative example of data mining to the IUSS occurrences. This extends the application of statistical process control and data mining in healthcare applications.
ContributorsWeart, Gail (Author) / Runger, George C. (Thesis advisor) / Li, Jing (Committee member) / Shunk, Dan (Committee member) / Arizona State University (Publisher)
Created2014
157057-Thumbnail Image.png
Description
The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information.

The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information. As witnessed in recent incidents of misinformation, it escalates quickly and can impact social media users with undesirable consequences and wreak havoc instantaneously. Different from some existing research in psychology and social sciences about misinformation, social media platforms pose unprecedented challenges for misinformation detection. First, intentional spreaders of misinformation will actively disguise themselves. Second, content of misinformation may be manipulated to avoid being detected, while abundant contextual information may play a vital role in detecting it. Third, not only accuracy, earliness of a detection method is also important in containing misinformation from being viral. Fourth, social media platforms have been used as a fundamental data source for various disciplines, and these research may have been conducted in the presence of misinformation. To tackle the challenges, we focus on developing machine learning algorithms that are robust to adversarial manipulation and data scarcity.

The main objective of this dissertation is to provide a systematic study of misinformation detection in social media. To tackle the challenges of adversarial attacks, I propose adaptive detection algorithms to deal with the active manipulations of misinformation spreaders via content and networks. To facilitate content-based approaches, I analyze the contextual data of misinformation and propose to incorporate the specific contextual patterns of misinformation into a principled detection framework. Considering its rapidly growing nature, I study how misinformation can be detected at an early stage. In particular, I focus on the challenge of data scarcity and propose a novel framework to enable historical data to be utilized for emerging incidents that are seemingly irrelevant. With misinformation being viral, applications that rely on social media data face the challenge of corrupted data. To this end, I present robust statistical relational learning and personalization algorithms to minimize the negative effect of misinformation.
ContributorsWu, Liang (Author) / Liu, Huan (Thesis advisor) / Tong, Hanghang (Committee member) / Doupe, Adam (Committee member) / Davison, Brian D. (Committee member) / Arizona State University (Publisher)
Created2019
154769-Thumbnail Image.png
Description
Stock market news and investing tips are popular topics in Twitter. In this dissertation, first I utilize a 5-year financial news corpus comprising over 50,000 articles collected from the NASDAQ website matching the 30 stock symbols in Dow Jones Index (DJI) to train a directional stock price prediction system based

Stock market news and investing tips are popular topics in Twitter. In this dissertation, first I utilize a 5-year financial news corpus comprising over 50,000 articles collected from the NASDAQ website matching the 30 stock symbols in Dow Jones Index (DJI) to train a directional stock price prediction system based on news content. Next, I proceed to show that information in articles indicated by breaking Tweet volumes leads to a statistically significant boost in the hourly directional prediction accuracies for the DJI stock prices mentioned in these articles. Secondly, I show that using document-level sentiment extraction does not yield a statistically significant boost in the directional predictive accuracies in the presence of other 1-gram keyword features. Thirdly I test the performance of the system on several time-frames and identify the 4 hour time-frame for both the price charts and for Tweet breakout detection as the best time-frame combination. Finally, I develop a set of price momentum based trade exit rules to cut losing trades early and to allow the winning trades run longer. I show that the Tweet volume breakout based trading system with the price momentum based exit rules not only improves the winning accuracy and the return on investment, but it also lowers the maximum drawdown and achieves the highest overall return over maximum drawdown.
ContributorsAlostad, Hana (Author) / Davulcu, Hasan (Thesis advisor) / Corman, Steven (Committee member) / Tong, Hanghang (Committee member) / He, Jingrui (Committee member) / Arizona State University (Publisher)
Created2016
155252-Thumbnail Image.png
Description
Due to vast resources brought by social media services, social data mining has

received increasing attention in recent years. The availability of sheer amounts of

user-generated data presents data scientists both opportunities and challenges. Opportunities are presented with additional data sources. The abundant link information

in social networks could provide another rich source

Due to vast resources brought by social media services, social data mining has

received increasing attention in recent years. The availability of sheer amounts of

user-generated data presents data scientists both opportunities and challenges. Opportunities are presented with additional data sources. The abundant link information

in social networks could provide another rich source in deriving implicit information

for social data mining. However, the vast majority of existing studies overwhelmingly

focus on positive links between users while negative links are also prevailing in real-

world social networks such as distrust relations in Epinions and foe links in Slashdot.

Though recent studies show that negative links have some added value over positive

links, it is dicult to directly employ them because of its distinct characteristics from

positive interactions. Another challenge is that label information is rather limited

in social media as the labeling process requires human attention and may be very

expensive. Hence, alternative criteria are needed to guide the learning process for

many tasks such as feature selection and sentiment analysis.

To address above-mentioned issues, I study two novel problems for signed social

networks mining, (1) unsupervised feature selection in signed social networks; and

(2) unsupervised sentiment analysis with signed social networks. To tackle the first problem, I propose a novel unsupervised feature selection framework SignedFS. In

particular, I model positive and negative links simultaneously for user preference

learning, and then embed the user preference learning into feature selection. To study the second problem, I incorporate explicit sentiment signals in textual terms and

implicit sentiment signals from signed social networks into a coherent model Signed-

Senti. Empirical experiments on real-world datasets corroborate the effectiveness of

these two frameworks on the tasks of feature selection and sentiment analysis.
ContributorsCheng, Kewei (Author) / Liu, Huan (Thesis advisor) / Tong, Hanghang (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2017
157587-Thumbnail Image.png
Description
In recent years, the rise in social media usage both vertically in terms of the number of users by platform and horizontally in terms of the number of platforms per user has led to data explosion.

User-generated social media content provides an excellent opportunity to mine data of interest and to

In recent years, the rise in social media usage both vertically in terms of the number of users by platform and horizontally in terms of the number of platforms per user has led to data explosion.

User-generated social media content provides an excellent opportunity to mine data of interest and to build resourceful applications. The rise in the number of healthcare-related social media platforms and the volume of healthcare knowledge available online in the last decade has resulted in increased social media usage for personal healthcare. In the United States, nearly ninety percent of adults, in the age group 50-75, have used social media to seek and share health information. Motivated by the growth of social media usage, this thesis focuses on healthcare-related applications, study various challenges posed by social media data, and address them through novel and effective machine learning algorithms.



The major challenges for effectively and efficiently mining social media data to build functional applications include: (1) Data reliability and acceptance: most social media data (especially in the context of healthcare-related social media) is not regulated and little has been studied on the benefits of healthcare-specific social media; (2) Data heterogeneity: social media data is generated by users with both demographic and geographic diversity; (3) Model transparency and trustworthiness: most existing machine learning models for addressing heterogeneity are considered as black box models, not many providing explanations for why they do what they do to trust them.

In response to these challenges, three main research directions have been investigated in this thesis: (1) Analyzing social media influence on healthcare: to study the real world impact of social media as a source to offer or seek support for patients with chronic health conditions; (2) Learning from task heterogeneity: to propose various models and algorithms that are adaptable to new social media platforms and robust to dynamic social media data, specifically on modeling user behaviors, identifying similar actors across platforms, and adapting black box models to a specific learning scenario; (3) Explaining heterogeneous models: to interpret predictive models in the presence of task heterogeneity. In this thesis, novel algorithms with theoretical analysis from various aspects (e.g., time complexity, convergence properties) have been proposed. The effectiveness and efficiency of the proposed algorithms is demonstrated by comparison with state-of-the-art methods and relevant case studies.
ContributorsNelakurthi, Arun Reddy (Author) / He, Jingrui (Thesis advisor) / Cook, Curtiss B (Committee member) / Maciejewski, Ross (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2019
162017-Thumbnail Image.png
Description
Data mining, also known as big data analysis, has been identified as a critical and challenging process for a variety of applications in real-world problems. Numerous datasets are collected and generated every day to store the information. The rise in the number of data volumes and data modality has resulted

Data mining, also known as big data analysis, has been identified as a critical and challenging process for a variety of applications in real-world problems. Numerous datasets are collected and generated every day to store the information. The rise in the number of data volumes and data modality has resulted in the increased demand for data mining methods and strategies of finding anomalies, patterns, and correlations within large data sets to predict outcomes. Effective machine learning methods are widely adapted to build the data mining pipeline for various purposes like business understanding, data understanding, data preparation, modeling, evaluation, and deployment. The major challenges for effectively and efficiently mining big data include (1) data heterogeneity and (2) missing data. Heterogeneity is the natural characteristic of big data, as the data is typically collected from different sources with diverse formats. The missing value is the most common issue faced by the heterogeneous data analysis, which resulted from variety of factors including the data collecting processing, user initiatives, erroneous data entries, and so on. In response to these challenges, in this thesis, three main research directions with application scenarios have been investigated: (1) Mining and Formulating Heterogeneous Data, (2) missing value imputation strategy in various application scenarios in both offline and online manner, and (3) missing value imputation for multi-modality data. Multiple strategies with theoretical analysis are presented, and the evaluation of the effectiveness of the proposed algorithms compared with state-of-the-art methods is discussed.
Contributorsliu, Xu (Author) / He, Jingrui (Thesis advisor) / Xue, Guoliang (Thesis advisor) / Li, Baoxin (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2021