Matching Items (12)
Filtering by

Clear all filters

152768-Thumbnail Image.png
Description
In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact

In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact patient safety and hospital revenue. Any time instrumentation or devices are not available or are not fit for use, patient safety and revenue can be negatively impacted. One step of the instrument reprocessing cycle is sterilization. Steam sterilization is the sterilization method used for the majority of surgical instruments and is preferred to immediate use steam sterilization (IUSS) because terminally sterilized items can be stored until needed. IUSS Items must be used promptly and cannot be stored for later use. IUSS is intended for emergency situations and not as regular course of action. Unfortunately, IUSS is used to compensate for inadequate inventory levels, scheduling conflicts, and miscommunications. If IUSS is viewed as an adverse event, then monitoring IUSS incidences can help healthcare organizations meet patient safety goals and financial goals along with aiding in process improvement efforts. This work recommends statistical process control methods to IUSS incidents and illustrates the use of control charts for IUSS occurrences through a case study and analysis of the control charts for data from a health care provider. Furthermore, this work considers the application of data mining methods to IUSS occurrences and presents a representative example of data mining to the IUSS occurrences. This extends the application of statistical process control and data mining in healthcare applications.
ContributorsWeart, Gail (Author) / Runger, George C. (Thesis advisor) / Li, Jing (Committee member) / Shunk, Dan (Committee member) / Arizona State University (Publisher)
Created2014
153428-Thumbnail Image.png
Description
Social networking services have emerged as an important platform for large-scale information sharing and communication. With the growing popularity of social media, spamming has become rampant in the platforms. Complex network interactions and evolving content present great challenges for social spammer detection. Different from some existing well-studied platforms, distinct characteristics

Social networking services have emerged as an important platform for large-scale information sharing and communication. With the growing popularity of social media, spamming has become rampant in the platforms. Complex network interactions and evolving content present great challenges for social spammer detection. Different from some existing well-studied platforms, distinct characteristics of newly emerged social media data present new challenges for social spammer detection. First, texts in social media are short and potentially linked with each other via user connections. Second, it is observed that abundant contextual information may play an important role in distinguishing social spammers and normal users. Third, not only the content information but also the social connections in social media evolve very fast. Fourth, it is easy to amass vast quantities of unlabeled data in social media, but would be costly to obtain labels, which are essential for many supervised algorithms. To tackle those challenges raise in social media data, I focused on developing effective and efficient machine learning algorithms for social spammer detection.

I provide a novel and systematic study of social spammer detection in the dissertation. By analyzing the properties of social network and content information, I propose a unified framework for social spammer detection by collectively using the two types of information in social media. Motivated by psychological findings in physical world, I investigate whether sentiment analysis can help spammer detection in online social media. In particular, I conduct an exploratory study to analyze the sentiment differences between spammers and normal users; and present a novel method to incorporate sentiment information into social spammer detection framework. Given the rapidly evolving nature, I propose a novel framework to efficiently reflect the effect of newly emerging social spammers. To tackle the problem of lack of labeling data in social media, I study how to incorporate network information into text content modeling, and design strategies to select the most representative and informative instances from social media for labeling. Motivated by publicly available label information from other media platforms, I propose to make use of knowledge learned from cross-media to help spammer detection on social media.
ContributorsHu, Xia, Ph.D (Author) / Liu, Huan (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Ye, Jieping (Committee member) / Faloutsos, Christos (Committee member) / Arizona State University (Publisher)
Created2015
153374-Thumbnail Image.png
Description
Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected to be visible to their friends, but sometimes vulnerable to

Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected to be visible to their friends, but sometimes vulnerable to unwarranted access from others. The recent study suggests that many personal attributes, including religious and political affiliations, sexual orientation, relationship status, age, and gender, are predictable using users' personal data from an OSN site. The majority of users want to remain socially active, and protect their personal data at the same time. This tension leads to a user's vulnerability, allowing privacy attacks which can cause physical and emotional distress to a user, sometimes with dire consequences. For example, stalkers can make use of personal information available on an OSN site to their personal gain. This dissertation aims to systematically study a user vulnerability against such privacy attacks.

A user vulnerability can be managed in three steps: (1) identifying, (2) measuring and (3) reducing a user vulnerability. Researchers have long been identifying vulnerabilities arising from user's personal data, including user names, demographic attributes, lists of friends, wall posts and associated interactions, multimedia data such as photos, audios and videos, and tagging of friends. Hence, this research first proposes a way to measure and reduce a user vulnerability to protect such personal data. This dissertation also proposes an algorithm to minimize a user's vulnerability while maximizing their social utility values.

To address these vulnerability concerns, social networking sites like Facebook usually let their users to adjust their profile settings so as to make some of their data invisible. However, users sometimes interact with others using unprotected posts (e.g., posts from a ``Facebook page\footnote{The term ''Facebook page`` refers to the page which are commonly dedicated for businesses, brands and organizations to share their stories and connect with people.}''). Such interactions help users to become more social and are publicly accessible to everyone. Thus, visibilities of these interactions are beyond the control of their profile settings. I explore such unprotected interactions so that users' are well aware of these new vulnerabilities and adopt measures to mitigate them further. In particular, {\em are users' personal attributes predictable using only the unprotected interactions}? To answer this question, I address a novel problem of predictability of users' personal attributes with unprotected interactions. The extreme sparsity patterns in users' unprotected interactions pose a serious challenge. Therefore, I approach to mitigating the data sparsity challenge by designing a novel attribute prediction framework using only the unprotected interactions. Experimental results on Facebook dataset demonstrates that the proposed framework can predict users' personal attributes.
ContributorsGundecha, Pritam S (Author) / Liu, Huan (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Ye, Jieping (Committee member) / Barbier, Geoffrey (Committee member) / Arizona State University (Publisher)
Created2015
150158-Thumbnail Image.png
Description
Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering

Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.
ContributorsSun, Liang (Author) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Liu, Huan (Committee member) / Mittelmann, Hans D. (Committee member) / Arizona State University (Publisher)
Created2011
150190-Thumbnail Image.png
Description
Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of

Sparse learning is a technique in machine learning for feature selection and dimensionality reduction, to find a sparse set of the most relevant features. In any machine learning problem, there is a considerable amount of irrelevant information, and separating relevant information from the irrelevant information has been a topic of focus. In supervised learning like regression, the data consists of many features and only a subset of the features may be responsible for the result. Also, the features might require special structural requirements, which introduces additional complexity for feature selection. The sparse learning package, provides a set of algorithms for learning a sparse set of the most relevant features for both regression and classification problems. Structural dependencies among features which introduce additional requirements are also provided as part of the package. The features may be grouped together, and there may exist hierarchies and over- lapping groups among these, and there may be requirements for selecting the most relevant groups among them. In spite of getting sparse solutions, the solutions are not guaranteed to be robust. For the selection to be robust, there are certain techniques which provide theoretical justification of why certain features are selected. The stability selection, is a method for feature selection which allows the use of existing sparse learning methods to select the stable set of features for a given training sample. This is done by assigning probabilities for the features: by sub-sampling the training data and using a specific sparse learning technique to learn the relevant features, and repeating this a large number of times, and counting the probability as the number of times a feature is selected. Cross-validation which is used to determine the best parameter value over a range of values, further allows to select the best parameter value. This is done by selecting the parameter value which gives the maximum accuracy score. With such a combination of algorithms, with good convergence guarantees, stable feature selection properties and the inclusion of various structural dependencies among features, the sparse learning package will be a powerful tool for machine learning research. Modular structure, C implementation, ATLAS integration for fast linear algebraic subroutines, make it one of the best tool for a large sparse setting. The varied collection of algorithms, support for group sparsity, batch algorithms, are a few of the notable functionality of the SLEP package, and these features can be used in a variety of fields to infer relevant elements. The Alzheimer Disease(AD) is a neurodegenerative disease, which gradually leads to dementia. The SLEP package is used for feature selection for getting the most relevant biomarkers from the available AD dataset, and the results show that, indeed, only a subset of the features are required to gain valuable insights.
ContributorsThulasiram, Ramesh (Author) / Ye, Jieping (Thesis advisor) / Xue, Guoliang (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
157057-Thumbnail Image.png
Description
The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information.

The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information. As witnessed in recent incidents of misinformation, it escalates quickly and can impact social media users with undesirable consequences and wreak havoc instantaneously. Different from some existing research in psychology and social sciences about misinformation, social media platforms pose unprecedented challenges for misinformation detection. First, intentional spreaders of misinformation will actively disguise themselves. Second, content of misinformation may be manipulated to avoid being detected, while abundant contextual information may play a vital role in detecting it. Third, not only accuracy, earliness of a detection method is also important in containing misinformation from being viral. Fourth, social media platforms have been used as a fundamental data source for various disciplines, and these research may have been conducted in the presence of misinformation. To tackle the challenges, we focus on developing machine learning algorithms that are robust to adversarial manipulation and data scarcity.

The main objective of this dissertation is to provide a systematic study of misinformation detection in social media. To tackle the challenges of adversarial attacks, I propose adaptive detection algorithms to deal with the active manipulations of misinformation spreaders via content and networks. To facilitate content-based approaches, I analyze the contextual data of misinformation and propose to incorporate the specific contextual patterns of misinformation into a principled detection framework. Considering its rapidly growing nature, I study how misinformation can be detected at an early stage. In particular, I focus on the challenge of data scarcity and propose a novel framework to enable historical data to be utilized for emerging incidents that are seemingly irrelevant. With misinformation being viral, applications that rely on social media data face the challenge of corrupted data. To this end, I present robust statistical relational learning and personalization algorithms to minimize the negative effect of misinformation.
ContributorsWu, Liang (Author) / Liu, Huan (Thesis advisor) / Tong, Hanghang (Committee member) / Doupe, Adam (Committee member) / Davison, Brian D. (Committee member) / Arizona State University (Publisher)
Created2019
154769-Thumbnail Image.png
Description
Stock market news and investing tips are popular topics in Twitter. In this dissertation, first I utilize a 5-year financial news corpus comprising over 50,000 articles collected from the NASDAQ website matching the 30 stock symbols in Dow Jones Index (DJI) to train a directional stock price prediction system based

Stock market news and investing tips are popular topics in Twitter. In this dissertation, first I utilize a 5-year financial news corpus comprising over 50,000 articles collected from the NASDAQ website matching the 30 stock symbols in Dow Jones Index (DJI) to train a directional stock price prediction system based on news content. Next, I proceed to show that information in articles indicated by breaking Tweet volumes leads to a statistically significant boost in the hourly directional prediction accuracies for the DJI stock prices mentioned in these articles. Secondly, I show that using document-level sentiment extraction does not yield a statistically significant boost in the directional predictive accuracies in the presence of other 1-gram keyword features. Thirdly I test the performance of the system on several time-frames and identify the 4 hour time-frame for both the price charts and for Tweet breakout detection as the best time-frame combination. Finally, I develop a set of price momentum based trade exit rules to cut losing trades early and to allow the winning trades run longer. I show that the Tweet volume breakout based trading system with the price momentum based exit rules not only improves the winning accuracy and the return on investment, but it also lowers the maximum drawdown and achieves the highest overall return over maximum drawdown.
ContributorsAlostad, Hana (Author) / Davulcu, Hasan (Thesis advisor) / Corman, Steven (Committee member) / Tong, Hanghang (Committee member) / He, Jingrui (Committee member) / Arizona State University (Publisher)
Created2016
155252-Thumbnail Image.png
Description
Due to vast resources brought by social media services, social data mining has

received increasing attention in recent years. The availability of sheer amounts of

user-generated data presents data scientists both opportunities and challenges. Opportunities are presented with additional data sources. The abundant link information

in social networks could provide another rich source

Due to vast resources brought by social media services, social data mining has

received increasing attention in recent years. The availability of sheer amounts of

user-generated data presents data scientists both opportunities and challenges. Opportunities are presented with additional data sources. The abundant link information

in social networks could provide another rich source in deriving implicit information

for social data mining. However, the vast majority of existing studies overwhelmingly

focus on positive links between users while negative links are also prevailing in real-

world social networks such as distrust relations in Epinions and foe links in Slashdot.

Though recent studies show that negative links have some added value over positive

links, it is dicult to directly employ them because of its distinct characteristics from

positive interactions. Another challenge is that label information is rather limited

in social media as the labeling process requires human attention and may be very

expensive. Hence, alternative criteria are needed to guide the learning process for

many tasks such as feature selection and sentiment analysis.

To address above-mentioned issues, I study two novel problems for signed social

networks mining, (1) unsupervised feature selection in signed social networks; and

(2) unsupervised sentiment analysis with signed social networks. To tackle the first problem, I propose a novel unsupervised feature selection framework SignedFS. In

particular, I model positive and negative links simultaneously for user preference

learning, and then embed the user preference learning into feature selection. To study the second problem, I incorporate explicit sentiment signals in textual terms and

implicit sentiment signals from signed social networks into a coherent model Signed-

Senti. Empirical experiments on real-world datasets corroborate the effectiveness of

these two frameworks on the tasks of feature selection and sentiment analysis.
ContributorsCheng, Kewei (Author) / Liu, Huan (Thesis advisor) / Tong, Hanghang (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2017
151587-Thumbnail Image.png
Description
The rapid growth in the high-throughput technologies last few decades makes the manual processing of the generated data to be impracticable. Even worse, the machine learning and data mining techniques seemed to be paralyzed against these massive datasets. High-dimensionality is one of the most common challenges for machine learning and

The rapid growth in the high-throughput technologies last few decades makes the manual processing of the generated data to be impracticable. Even worse, the machine learning and data mining techniques seemed to be paralyzed against these massive datasets. High-dimensionality is one of the most common challenges for machine learning and data mining tasks. Feature selection aims to reduce dimensionality by selecting a small subset of the features that perform at least as good as the full feature set. Generally, the learning performance, e.g. classification accuracy, and algorithm complexity are used to measure the quality of the algorithm. Recently, the stability of feature selection algorithms has gained an increasing attention as a new indicator due to the necessity to select similar subsets of features each time when the algorithm is run on the same dataset even in the presence of a small amount of perturbation. In order to cure the selection stability issue, we should understand the cause of instability first. In this dissertation, we will investigate the causes of instability in high-dimensional datasets using well-known feature selection algorithms. As a result, we found that the stability mostly data-dependent. According to these findings, we propose a framework to improve selection stability by solving these main causes. In particular, we found that data noise greatly impacts the stability and the learning performance as well. So, we proposed to reduce it in order to improve both selection stability and learning performance. However, current noise reduction approaches are not able to distinguish between data noise and variation in samples from different classes. For this reason, we overcome this limitation by using Supervised noise reduction via Low Rank Matrix Approximation, SLRMA for short. The proposed framework has proved to be successful on different types of datasets with high-dimensionality, such as microarrays and images datasets. However, this framework cannot handle unlabeled, hence, we propose Local SVD to overcome this limitation.
ContributorsAlelyani, Salem (Author) / Liu, Huan (Thesis advisor) / Xue, Guoliang (Committee member) / Ye, Jieping (Committee member) / Zhao, Zheng (Committee member) / Arizona State University (Publisher)
Created2013
154269-Thumbnail Image.png
Description
Understanding the complexity of temporal and spatial characteristics of gene expression over brain development is one of the crucial research topics in neuroscience. An accurate description of the locations and expression status of relative genes requires extensive experiment resources. The Allen Developing Mouse Brain Atlas provides a large number of

Understanding the complexity of temporal and spatial characteristics of gene expression over brain development is one of the crucial research topics in neuroscience. An accurate description of the locations and expression status of relative genes requires extensive experiment resources. The Allen Developing Mouse Brain Atlas provides a large number of in situ hybridization (ISH) images of gene expression over seven different mouse brain developmental stages. Studying mouse brain models helps us understand the gene expressions in human brains. This atlas collects about thousands of genes and now they are manually annotated by biologists. Due to the high labor cost of manual annotation, investigating an efficient approach to perform automated gene expression annotation on mouse brain images becomes necessary. In this thesis, a novel efficient approach based on machine learning framework is proposed. Features are extracted from raw brain images, and both binary classification and multi-class classification models are built with some supervised learning methods. To generate features, one of the most adopted methods in current research effort is to apply the bag-of-words (BoW) algorithm. However, both the efficiency and the accuracy of BoW are not outstanding when dealing with large-scale data. Thus, an augmented sparse coding method, which is called Stochastic Coordinate Coding, is adopted to generate high-level features in this thesis. In addition, a new multi-label classification model is proposed in this thesis. Label hierarchy is built based on the given brain ontology structure. Experiments have been conducted on the atlas and the results show that this approach is efficient and classifies the images with a relatively higher accuracy.
ContributorsZhao, Xinlin (Author) / Ye, Jieping (Thesis advisor) / Wang, Yalin (Thesis advisor) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2016