Matching Items (73)
157204-Thumbnail Image.png
Description
Researchers have described two fundamental conceptualizations for division, known as partitive and quotitive division. Partitive division is the conceptualization of a÷b as the amount of something per copy such that b copies of this amount yield the amount a. Quotitive division is the conceptualization of a÷b as the number of

Researchers have described two fundamental conceptualizations for division, known as partitive and quotitive division. Partitive division is the conceptualization of a÷b as the amount of something per copy such that b copies of this amount yield the amount a. Quotitive division is the conceptualization of a÷b as the number of copies of the amount b that yield the amount a. Researchers have identified many cognitive obstacles that have inhibited the development of robust meanings for division involving non-whole values, while other researchers have commented on the challenges related to such development. Regarding division with fractions, much research has been devoted to quotitive conceptualizations of division, or on symbolic manipulation of variables. Research and curricular activities have largely avoided the study and development of partitive conceptualizations involving fractions, as well as their connection to the invert-and-multiply algorithm. In this dissertation study, I investigated six middle school mathematics teachers’ meanings related to partitive conceptualizations of division over the positive rational numbers. I also investigated the impact of an intervention that I designed with the intent of advancing one of these teachers’ meanings. My findings suggested that the primary cognitive obstacles were difficulties with maintaining multiple levels of units, weak quantitative meanings for fractional multipliers, and an unawareness of (and confusion due to) the two quantitative conceptualizations of division. As a product of this study, I developed a framework for characterizing robust meanings for division, indicated directions for future research, and shared implications for curriculum and instruction.
ContributorsWeber, Matthew Barrett (Author) / Strom, April D (Thesis advisor) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn (Committee member) / Middleton, James (Committee member) / Tzur, Ron (Committee member) / Arizona State University (Publisher)
Created2019
157227-Thumbnail Image.png
Description
The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic

The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic process students develop as they work through materials intended to support them in constructing the long-run behavior meaning for distribution.

I collected data in three phases. First, I conducted a set of task-based clinical interviews that allowed me to build initial models for the students’ meanings for randomness and probability. Second, I worked with Bonnie in an exploratory teaching setting through three sets of activities to see what meanings she would develop for randomness and stochastic process. The final phase consisted of me working with Danielle as she worked through the same activities as Bonnie but this time in teaching experiment setting where I used a series of interventions to test out how Danielle was thinking about stochastic processes.

My analysis shows that students can be aware that the word “random” lives in two worlds, thereby having conflicting meanings. Bonnie’s meaning for randomness evolved over the course of the study from an unproductive meaning centered on the emotions of the characters in the context to a meaning that randomness is the lack of a pattern. Bonnie’s lack of pattern meaning for randomness subsequently underpinned her image of stochastic/processes, leading her to engage in pattern-hunting behavior every time she needed to classify a process as stochastic or not. Danielle’s image of a stochastic process was grounded in whether she saw the repetition as being reproducible (process can be repeated, and outcomes are identical to prior time through the process) or replicable (process can be repeated but the outcomes aren’t in the same order as before). Danielle employed a strategy of carrying out several trials of the process, resetting the applet, and then carrying out the process again, making replicability central to her thinking.
ContributorsHatfield, Neil (Author) / Thompson, Patrick (Thesis advisor) / Carlson, Marilyn (Committee member) / Middleton, James (Committee member) / Lehrer, Richard (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2019
136687-Thumbnail Image.png
Description
Mathematics is an increasingly critical subject and the achievement of students in mathematics has been the focus of many recent reports and studies. However, few studies exist that both observe and discuss the specific teaching and assessment techniques employed in the classrooms across multiple countries. The focus of this study

Mathematics is an increasingly critical subject and the achievement of students in mathematics has been the focus of many recent reports and studies. However, few studies exist that both observe and discuss the specific teaching and assessment techniques employed in the classrooms across multiple countries. The focus of this study is to look at classrooms and educators across six high achieving countries to identify and compare teaching strategies being used. In Finland, Hong Kong, Japan, New Zealand, Singapore, and Switzerland, twenty educators were interviewed and fourteen educators were observed teaching. Themes were first identified by comparing individual teacher responses within each country. These themes were then grouped together across countries and eight emerging patterns were identified. These strategies include students active involvement in the classroom, students given written feedback on assessments, students involvement in thoughtful discussion about mathematical concepts, students solving and explaining mathematics problems at the board, students exploring mathematical concepts either before or after being taught the material, students engagement in practical applications, students making connections between concepts, and students having confidence in their ability to understand mathematics. The strategies identified across these six high achieving countries can inform educators in their efforts of increasing student understanding of mathematical concepts and lead to an improvement in mathematics performance.
ContributorsAnglin, Julia Mae (Author) / Middleton, James (Thesis director) / Vicich, James (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-12
136121-Thumbnail Image.png
Description
The focus of this study was to examine how a student's understanding of function notation impacted their approaches to problem solving. Before this question could be answered, students' understandings about function notation had to be determined. The goal of the first part of the data was to determine the norm

The focus of this study was to examine how a student's understanding of function notation impacted their approaches to problem solving. Before this question could be answered, students' understandings about function notation had to be determined. The goal of the first part of the data was to determine the norm of understanding for function notation for students after taking a college level pre-calculus class. From the data collected, several ideas about student understanding of notation emerged. The goal of the second data set was to determine if student understanding of notation impacted their reasoning while problem solving, and if so, how it impacted their reasoning. Collected data suggests that much of what students "understand" about function notation comes from memorized procedures and that the notation may have little or no meaning for students in context. Evidence from this study indicates that this lack of understanding of function notation does negatively impact student's ability to solve context based problems. In order to build a strong foundation of function, a well-developed understanding of function notation is necessary. Because function notation is a widely accepted way of communicating information about function relationships, understanding its uses and meanings in context is imperative for developing a strong foundation that will allow individuals to approach functions in a meaningful and productive manner.
ContributorsLe, Lesley Kim (Author) / Carlson, Marilyn (Thesis director) / Greenes, Carole (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2015-05
133862-Thumbnail Image.png
Description
Previous research has examined difficulties that students have with understanding and productively working with function notation. Function notation is very prevalent throughout mathematics education, helping students to better understand and more easily work with functions. The goal of my research was to investigate students' current ways of thinking about function

Previous research has examined difficulties that students have with understanding and productively working with function notation. Function notation is very prevalent throughout mathematics education, helping students to better understand and more easily work with functions. The goal of my research was to investigate students' current ways of thinking about function notation to better assist teachers in helping their students develop deeper and more productive understandings. In this study, I conducted two separate interviews with two undergraduate students to explore their meanings for function notation. I developed and adapted tasks aimed at investigating different aspects and uses of function notation. In each interview, I asked the participants to attempt each of the tasks, explaining their thoughts as they worked. While they were working, I occasionally asked clarifying questions to better understand their thought processes. For the second interviews, I added tasks based on difficulties I found in the first interviews. I video recorded each interview for later analysis. Based on the data found in the interviews, I will discuss the seven prevalent ways of thinking that I found, how they hindered or facilitated working with function notation productively, and suggestions for instruction to better help students understand the concept.
ContributorsMckee, Natalie Christina (Author) / Thompson, Patrick (Thesis director) / Zazkis, Dov (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137221-Thumbnail Image.png
Description
This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University

This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University initially identified mental actions that we conjectured were needed for constructing meaningful linear formulas. This guided the development of tasks for the sequence of clinical interviews with one high-performing precalculus student. Analysis of the interview data revealed that in instances when the subject engaged in meaning making that led to him imagining and identifying the relevant quantities and how they change together, he was able to give accurate definitions of variables and was usually able to define a formula to relate the two quantities of interest. However, we found that the student sometimes had difficulty imagining how the two quantities of interest were changing together. At other times he exhibited a weak understanding of the operation of subtraction and the idea of constant rate of change. He did not appear to conceptualize subtraction as a quantitative comparison. His inability to conceptualize a constant rate of change as a proportional relationship between the changes in two quantities also presented an obstacle in his developing a meaningful formula that relied on this understanding. The results further stress the need to develop a student's ability to engage in mental operations that involve covarying quantities and a more robust understanding of constant rate of change since these abilities and understanding are critical for student success in future courses in mathematics.
ContributorsKlinger, Tana Paige (Author) / Carlson, Marilyn (Thesis director) / Thompson, Pat (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
137023-Thumbnail Image.png
Description
Previous research discusses students' difficulties in grasping an operational understanding of covariational reasoning. In this study, I interviewed four undergraduate students in calculus and pre-calculus classes to determine their ways of thinking when working on an animated covariation problem. With previous studies in mind and with the use of technology,

Previous research discusses students' difficulties in grasping an operational understanding of covariational reasoning. In this study, I interviewed four undergraduate students in calculus and pre-calculus classes to determine their ways of thinking when working on an animated covariation problem. With previous studies in mind and with the use of technology, I devised an interview method, which I structured using multiple phases of pre-planned support. With these interviews, I gathered information about two main aspects about students' thinking: how students think when attempting to reason covariationally and which of the identified ways of thinking are most propitious for the development of an understanding of covariational reasoning. I will discuss how, based on interview data, one of the five identified ways of thinking about covariational reasoning is highly propitious, while the other four are somewhat less propitious.
ContributorsWhitmire, Benjamin James (Author) / Thompson, Patrick (Thesis director) / Musgrave, Stacy (Committee member) / Moore, Kevin C. (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2014-05
153836-Thumbnail Image.png
Description
Teachers must recognize the knowledge they possess as appropriate to employ in the process of achieving their goals and objectives in the context of practice. Such recognition is subject to a host of cognitive and affective processes that have thus far not been a central focus of research on teacher

Teachers must recognize the knowledge they possess as appropriate to employ in the process of achieving their goals and objectives in the context of practice. Such recognition is subject to a host of cognitive and affective processes that have thus far not been a central focus of research on teacher knowledge in mathematics education. To address this need, this dissertation study examined the role of a secondary mathematics teacher’s image of instructional constraints on his enacted subject matter knowledge. I collected data in three phases. First, I conducted a series of task-based clinical interviews that allowed me to construct a model of David’s mathematical knowledge of sine and cosine functions. Second, I conducted pre-lesson interviews, collected journal entries, and examined David’s instruction to characterize the mathematical knowledge he utilized in the context of designing and implementing lessons. Third, I conducted a series of semi-structured clinical interviews to identify the circumstances David appraised as constraints on his practice and to ascertain the role of these constraints on the quality of David’s enacted subject matter knowledge. My analysis revealed that although David possessed many productive ways of understanding that allowed him to engage students in meaningful learning experiences, I observed discrepancies between and within David’s mathematical knowledge and his enacted mathematical knowledge. These discrepancies were not occasioned by David’s active compensation for the circumstances and events he appraised as instructional constraints, but instead resulted from David possessing multiple schemes for particular ideas related to trigonometric functions, as well as from his unawareness of the mental actions and operations that comprised these often powerful but uncoordinated cognitive schemes. This lack of conscious awareness made David ill-equipped to define his instructional goals in terms of the mental activity in which he intended his students to engage, which further conditioned the circumstances and events he appraised as constraints on his practice. David’s image of instructional constraints therefore did not affect his enacted subject matter knowledge. Rather, characteristics of David’s subject matter knowledge, namely his uncoordinated cognitive schemes and his unawareness of the mental actions and operations that comprise them, affected his image of instructional constraints.
ContributorsTallman, Michael Anthony (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Saldanha, Luis (Committee member) / Middleton, James (Committee member) / Harel, Guershon (Committee member) / Arizona State University (Publisher)
Created2015
154442-Thumbnail Image.png
Description
A teacher’s mathematical knowledge for teaching impacts the teacher’s pedagogical actions and goals (Marfai & Carlson, 2012; Moore, Teuscher, & Carlson, 2011), and a teacher’s instructional goals (Webb, 2011) influences the development of the teacher’s content knowledge for teaching. This study aimed to characterize the reciprocal relationship between a teacher’s

A teacher’s mathematical knowledge for teaching impacts the teacher’s pedagogical actions and goals (Marfai & Carlson, 2012; Moore, Teuscher, & Carlson, 2011), and a teacher’s instructional goals (Webb, 2011) influences the development of the teacher’s content knowledge for teaching. This study aimed to characterize the reciprocal relationship between a teacher’s mathematical knowledge for teaching and pedagogical goals.

Two exploratory studies produced a framework to characterize a teacher’s mathematical goals for student learning. A case study was then conducted to investigate the effect of a professional developmental intervention designed to impact a teacher’s mathematical goals. The guiding research questions for this study were: (a) what is the effect of a professional development intervention, designed to perturb a teacher’s pedagogical goals for student learning to be more attentive to students’ thinking and learning, on a teacher’s views of teaching, stated goals for student learning, and overarching goals for students’ success in mathematics, and (b) what role does a teacher's mathematical teaching orientation and mathematical knowledge for teaching have on a teacher’s stated and overarching goals for student learning?

Analysis of the data from this investigation revealed that a conceptual curriculum supported the advancement of a teacher’s thinking regarding the key ideas of mathematics of lessons, but without time to reflect and plan, the teacher made limited connections between the key mathematical ideas within and across lessons. The teacher’s overarching goals for supporting student learning and views of teaching mathematics also had a significant influence on her curricular choices and pedagogical moves when teaching. The findings further revealed that a teacher’s limited meanings for proportionality contributed to the teacher struggling during teaching to support students’ learning of concepts that relied on understanding proportionality. After experiencing this struggle the teacher reverted back to using skill-based lessons she had used before.

The findings suggest a need for further research on the impact of professional development of teachers, both in building meanings of key mathematical ideas of a teacher’s lessons, and in professional support and time for teachers to build stronger mathematical meanings, reflect on student thinking and learning, and reconsider one’s instructional goals.
ContributorsMarfai, Frank Stephen (Author) / Carlson, Marilyn P. (Thesis advisor) / Ström, April D. (Committee member) / Thompson, Patrick W. (Committee member) / Middleton, James A. (Committee member) / Zandieh, Michelle J. (Committee member) / Arizona State University (Publisher)
Created2016
154145-Thumbnail Image.png
Description
This study was conducted to assess the performance of 176 students who received algebra instruction through an online platform presented in one of two experimental conditions to explore the effect of personalized learning paths by comparing it with linearly flowing instruction. The study was designed around eight research questions investigating

This study was conducted to assess the performance of 176 students who received algebra instruction through an online platform presented in one of two experimental conditions to explore the effect of personalized learning paths by comparing it with linearly flowing instruction. The study was designed around eight research questions investigating the effect of personalized learning paths on students’ learning, intrinsic motivation and satisfaction with their experience. Quantitative results were analyzed using Analysis of Variance (ANOVA), Analysis of Covariance (ANCOVA) and split-plot ANOVA methods. Additionally, qualitative feedback data were gathered from students and teachers on their experience to better explain the quantitative findings as well as improve understanding of how to effectively design an adaptive personalized learning platform. Quantitative results of the study showed no statistical difference between students assigned to treatments that compared linear and adaptive personalized instructional flows.

The lack of significant differences was explained by two main factors: (a) low usage and (b) platform and content related issues. Low usage may have prevented students from being exposed to the platforms long enough to create a potential for differences between the groups. Additionally, the reasons for low usage may in part be explained by the qualitative findings, which indicated that unmotivated and tired teachers and students were not very enthusiastic about the study because it occurred near the end of school year. Further, computer access was a challenging issue at the school throughout the study. On the other hand, platform and content related issues worked to inhibit the potential beneficial effects of the platforms. The three prominent issues were: (a) the majority of the students found the content boring or difficult, (b) repeated recommendations from the adaptive platform created frustration, and (c) a barely moving progress bar caused disappointment among participants.
ContributorsBicer, Alpay (Author) / Bitter, Gary G. (Thesis advisor) / Buss, Ray R (Committee member) / Legacy, Jane M. (Committee member) / Arizona State University (Publisher)
Created2015