Matching Items (10)
Filtering by

Clear all filters

151831-Thumbnail Image.png
Description
The need for improved mathematics education in many of America's schools that serve students from low income households has been extensively documented. This practical action research study, set in a suburban Title I school with a primarily Hispanic, non-native English speaking population, is designed to explore the effects of the

The need for improved mathematics education in many of America's schools that serve students from low income households has been extensively documented. This practical action research study, set in a suburban Title I school with a primarily Hispanic, non-native English speaking population, is designed to explore the effects of the progression through a set of problem solving solution strategies on the mathematics problem solving abilities of 2nd grade students. Students worked in class with partners to complete a Cognitively Guided Instruction-style (CGI) mathematics word problem using a dictated solution strategy five days a week for twelve weeks, three or four weeks for each of four solution strategies. The phases included acting out the problem using realia, representing the problem using standard mathematics manipulatives, modeling the problem using a schematic representation, and solving the problem using a number sentence. Data were collected using a five question problem solving pre- and post-assessment, video recorded observations, and Daily Answer Recording Slips or Mathematics Problem Solving Journals. Findings showed that this problem solving innovation was effective in increasing the problem solving abilities of all participants in this study, with an average increase of 63% in the number of pre-assessment to post-assessment questions answered correctly. Additionally, students increased the complexity of solutions used to solve problems and decreased the rate of guessing at answers to word problems. Further rounds of research looking into the direct effects of the MKO are suggested as next steps of research.
ContributorsSpilde, Amy (Author) / Zambo, Ronald (Thesis advisor) / Heck, Thomas (Committee member) / Nicoloff, Stephen J. (Committee member) / Arizona State University (Publisher)
Created2013
151525-Thumbnail Image.png
Description
ABSTRACT There is a continuing emphasis in the United States to improve student's mathematical abilities and one approach is to better prepare teachers. This study investigated the effects of using lesson study with preservice secondary mathematics teachers to improve their proficiency at planning and implementing instruction. The participants were students

ABSTRACT There is a continuing emphasis in the United States to improve student's mathematical abilities and one approach is to better prepare teachers. This study investigated the effects of using lesson study with preservice secondary mathematics teachers to improve their proficiency at planning and implementing instruction. The participants were students (preservice teachers) in an undergraduate teacher preparation program at a private university who were enrolled in a mathematics methods course for secondary math teachers. This project used lesson study to engage preservice teachers in collaboratively creating lessons, field testing them, using feedback to revise the lessons, and re-teaching the revised lesson. The preservice teachers worked through multiple cycles of the process in their secondary math methods class receiving feedback from their peers and instructor prior to teaching the lessons in their field experience (practicum). A mixed methods approach was implemented to investigate the preservice teacher's abilities to plan and implement instruction as well as their efficacy for teaching. Data were collected from surveys, video analysis, student reflections, and semi-structured interviews. The findings from this study indicate that lesson study for preservice teachers was an effective means of teacher education. Lesson study positively impacted the preservice teachers' ability to plan and teach mathematical lessons more effectively. The preservice teachers successfully transitioned from teaching in the methods classroom to their field experience classroom during this innovation. Further, the efficacy of the preservice teachers to teach secondary mathematics increased based on this innovation. Further action research cycles of lesson study with preservice teachers are recommended.
ContributorsMostofo, Jameel (Author) / Zambo, Ronald (Thesis advisor) / Elliott, Sherman (Committee member) / Heck, Thomas (Committee member) / Arizona State University (Publisher)
Created2013
152954-Thumbnail Image.png
Description
ABSTRACT

The early desire for and the pursuit of literacy are often mentioned in the teeming volumes devoted to African-American history. However, stories, facts, and figures about the acquisition of numeracy by African Americans have not been equally documented.

The focus of this study was to search for the third R, this

ABSTRACT

The early desire for and the pursuit of literacy are often mentioned in the teeming volumes devoted to African-American history. However, stories, facts, and figures about the acquisition of numeracy by African Americans have not been equally documented.

The focus of this study was to search for the third R, this is the numeracy and mathematics experiences of African Americans who were born in, and before, 1933. The investigation of this generational cadre was pursued in order to develop oral histories and narratives going back to the early 1900s. This study examined formal and informal education and other relevant mathematics-related, lived experiences of unacknowledged and unheralded African Americans, as opposed to the American anomalies of African descent who are most often acknowledged, such as the Benjamin Bannekers, the George Washington Carvers, and other notables.



Quantitative and qualitative data were collected through the use of a survey and interviews. Quantitative results and qualitative findings were blended to present a nuanced perspective of African Americans learning mathematics during a period of Jim Crow, segregation, and discrimination. Their hopes, their fears, their challenges, their aspirations, their successes, and their failures are all tangential to their overall goal of seeking education, including mathematics education, in the early twentieth century. Both formal and informal experiences revealed a picture of life during those times to further enhance the literature regarding the mathematics experiences of African Americans.

Key words: Black students, historical, senior citizens, mathematics education, oral history, narrative, narrative inquiry, socio-cultural theory, Jim Crow
ContributorsLaCount, Marilyn Ruth (Author) / Zambo, Ronald (Thesis advisor) / Flores, Alfinio (Committee member) / Koblitz, Ann Hibner (Committee member) / Zambo, Debby (Committee member) / Arizona State University (Publisher)
Created2014
156439-Thumbnail Image.png
Description
There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document,

There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document, I present the three papers of my dissertation study. The first paper examines two students’ development of concepts foundational to the idea of logarithm. This paper discusses two essential understandings that were revealed to be problematic and essential for students’ development of productive meanings for exponents, logarithms and logarithmic properties. The findings of this study informed my later work to support students in understanding logarithms, their properties and logarithmic functions. The second paper examines two students’ development of the idea of logarithm. This paper describes the reasoning abilities two students exhibited as they engaged with tasks designed to foster their construction of more productive meanings for the idea of logarithm. The findings of this study provide novel insights for supporting students in understanding the idea of logarithm meaningfully. Finally, the third paper begins with an examination of the historical development of the idea of logarithm. I then leveraged the insights of this literature review and the first two papers to perform a conceptual analysis of what is involved in learning and understanding the idea of logarithm. The literature review and conceptual analysis contributes novel and useful information for curriculum developers, instructors, and other researchers studying student learning of this idea.
ContributorsKuper Flores, Emily Ginamarie (Author) / Carlson, Marilyn (Thesis advisor) / Thompson, Patrick (Committee member) / Milner, Fabio (Committee member) / Zazkis, Dov (Committee member) / Czocher, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
133862-Thumbnail Image.png
Description
Previous research has examined difficulties that students have with understanding and productively working with function notation. Function notation is very prevalent throughout mathematics education, helping students to better understand and more easily work with functions. The goal of my research was to investigate students' current ways of thinking about function

Previous research has examined difficulties that students have with understanding and productively working with function notation. Function notation is very prevalent throughout mathematics education, helping students to better understand and more easily work with functions. The goal of my research was to investigate students' current ways of thinking about function notation to better assist teachers in helping their students develop deeper and more productive understandings. In this study, I conducted two separate interviews with two undergraduate students to explore their meanings for function notation. I developed and adapted tasks aimed at investigating different aspects and uses of function notation. In each interview, I asked the participants to attempt each of the tasks, explaining their thoughts as they worked. While they were working, I occasionally asked clarifying questions to better understand their thought processes. For the second interviews, I added tasks based on difficulties I found in the first interviews. I video recorded each interview for later analysis. Based on the data found in the interviews, I will discuss the seven prevalent ways of thinking that I found, how they hindered or facilitated working with function notation productively, and suggestions for instruction to better help students understand the concept.
ContributorsMckee, Natalie Christina (Author) / Thompson, Patrick (Thesis director) / Zazkis, Dov (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
149575-Thumbnail Image.png
Description
In any instructional situation, the instructor's goal is to maximize the learning attained by students. Drawing on the adage, 'we learn best what we have taught,' this action research project was conducted to examine whether students, in fact, learned college algebra material better if they taught it to their peers.

In any instructional situation, the instructor's goal is to maximize the learning attained by students. Drawing on the adage, 'we learn best what we have taught,' this action research project was conducted to examine whether students, in fact, learned college algebra material better if they taught it to their peers. The teaching-to-learn process was conducted in the following way. The instructor-researcher met with individual students and taught a college algebra topic to a student who served as the leader of a group of four students. At the next step, the student who originally learned the material from the instructor met with three other students in a small group session and taught the material to them to prepare an in-class presentation. Students in these small group sessions discussed how best to present the material, anticipated questions, and prepared a presentation to be shared with their classmates. The small group then taught the material to classmates during an in-class review session prior to unit examinations. Quantitative and qualitative data were gathered. Quantitative data consisted of pre- and post-test scores on four college algebra unit examinations. In addition, scores from Likert-scale items on an end-of-semester questionnaire that assessed the effectiveness of the teaching-to-learn process and attitudes toward the process were obtained. Qualitative data consisted of field notes from observations of selected small group sessions and in-class presentations. Additional qualitative data included responses to open-ended questions on the end-of-semester questionnaire and responses to interview items posed to groups of students. Results showed the quantitative data did not support the hypothesis that material, which was taught, was better learned than other material. Nevertheless, qualitative data indicated students were engaged in the material, had a deeper understanding of the material, and were more confident about it as a result of their participation in the teaching-to-learn process. Students also viewed the teaching-to-learn process as being effective and they had positive attitudes toward the teaching-to-learn process. Discussion focused on how engagement, deeper understanding and confidence interacted with one another to increase student learning. Lessons learned, implications for practice, and implications for further action research were also discussed.
ContributorsNicoloff, Stephen J (Author) / Buss, Ray R (Thesis advisor) / Zambo, Ronald (Committee member) / Shaw, Phyllis J (Committee member) / Arizona State University (Publisher)
Created2011
189302-Thumbnail Image.png
Description
Over the last several centuries, mathematicians have developed sophisticated symbol systems to represent ideas often imperceptible to their five senses. Although conventional definitions exist for these notations, individuals attribute their personalized meanings to these symbols during their mathematical activities. In some instances, students might (1) attribute a non-normative meaning to

Over the last several centuries, mathematicians have developed sophisticated symbol systems to represent ideas often imperceptible to their five senses. Although conventional definitions exist for these notations, individuals attribute their personalized meanings to these symbols during their mathematical activities. In some instances, students might (1) attribute a non-normative meaning to a conventional symbol or (2) attribute viable meanings for a mathematical topic to a novel symbol. This dissertation aims to investigate the relationships between students’ meanings and personal algebraic expressions in the context of one topic: infinite series convergence. To this end, I report the results of two individual constructivist teaching experiments in which first-time second-semester university calculus students constructed symbols (called personal expressions) to organize their thinking about various topics related to infinite series. My results comprise three distinct sections. First, I describe the intuitive meanings that the two students, Monica and Sylvia, exhibited for infinite series convergence before experiencing formal instruction on the topic. Second, I categorize the meanings these students attributed to their personal expressions for series topics and propose symbol categories corresponding to various instantiations of each meaning. Finally, I describe two situations in which students modified their personal expressions throughout several interviews to either (1) distinguish between examples they initially perceived as similar or (2) modify a previous personal expression to symbolize two ideas they initially perceived as distinct. To conclude, I discuss the research and teaching implications of my explanatory frameworks for students’ symbolization. I also provide an initial theoretical framing of the cognitive mechanisms by which students create, maintain, and modify their personal algebraic representations.
ContributorsEckman, Derek (Author) / Roh, Kyeong Hah (Thesis advisor) / Carlson, Marilyn (Committee member) / Martin, Jason (Committee member) / Spielberg, John (Committee member) / Zazkis, Dov (Committee member) / Arizona State University (Publisher)
Created2023
157856-Thumbnail Image.png
Description
The extent of students’ struggles in linear algebra courses is at times surprising to mathematicians and instructors. To gain insight into the challenges, the central question I investigated for this project was: What is the nature of undergraduate students’ conceptions of multiple analytic representations of systems (of equations)?

My methodological

The extent of students’ struggles in linear algebra courses is at times surprising to mathematicians and instructors. To gain insight into the challenges, the central question I investigated for this project was: What is the nature of undergraduate students’ conceptions of multiple analytic representations of systems (of equations)?

My methodological choices for this study included the use of one-on-one, task-based clinical interviews which were video and audio recorded. Participants were chosen on the basis of selection criteria applied to a pool of volunteers from junior-level applied linear algebra classes. I conducted both generative and convergent analyses in terms of Clement’s (2000) continuum of research purposes. The generative analysis involved an exploration of the data (in transcript form). The convergent analysis involved the analysis of two student interviews through the lenses of Duval’s (1997, 2006, 2017) Theory of Semiotic Representation Registers and a theory I propose, the Theory of Quantitative Systems.

All participants concluded that for the four representations in this study, the notation was varying while the solution was invariant. Their descriptions of what was represented by the various representations fell into distinct categories. Further, the students employed visual techniques, heuristics, metaphors, and mathematical computation to account for translations between the various representations.

Theoretically, I lay out some constructs that may help with awareness of the complexity in linear algebra. While there are many rich concepts in linear algebra, challenges may stem from less-than-robust communication. Further, mathematics at the level of linear algebra requires a much broader perspective than that of the ordinary algebra of real numbers. Empirically, my results and findings provide important insights into students’ conceptions. The study revealed that students consider and/or can have their interest piqued by such things as changes in register.

The lens I propose along with the empirical findings should stimulate conversations that result in linear algebra courses most beneficial to students. This is especially important since students who encounter undue difficulties may alter their intended plans of study, plans which would lead them into careers in STEM (Science, Technology, Engineering, & Mathematics) fields.
ContributorsSipes, Janet (Author) / Zandieh, Michelle J (Thesis advisor) / Milner, Fabio A (Committee member) / Roh, Kyeong H (Committee member) / Wawro, Megan (Committee member) / Zazkis, Dov (Committee member) / Arizona State University (Publisher)
Created2019
157632-Thumbnail Image.png
Description
Functions represented in the graphical register, as graphs in the Cartesian plane, are found throughout secondary and undergraduate mathematics courses. In the study of Calculus, specifically, graphs of functions are particularly prominent as a means of illustrating key concepts. Researchers have identified that some of the ways that students may

Functions represented in the graphical register, as graphs in the Cartesian plane, are found throughout secondary and undergraduate mathematics courses. In the study of Calculus, specifically, graphs of functions are particularly prominent as a means of illustrating key concepts. Researchers have identified that some of the ways that students may interpret graphs are unconventional, which may impact their understanding of related mathematical content. While research has primarily focused on how students interpret points on graphs and students’ images related to graphs as a whole, details of how students interpret and reason with variables and expressions on graphs of functions have remained unclear.

This dissertation reports a study characterizing undergraduate students’ interpretations of expressions in the graphical register with statements from Calculus, its association with their evaluations of these statements, its relation to the mathematical content of these statements, and its relation to their interpretations of points on graphs. To investigate students’ interpretations of expressions on graphs, I conducted 150-minute task-based clinical interviews with 13 undergraduate students who had completed Calculus I with a range of mathematical backgrounds. In the interviews, students were asked to evaluate propositional statements about functions related to key definitions and theorems of Calculus and were provided various graphs of functions to make their evaluations. The central findings from this study include the characteristics of four distinct interpretations of expressions on graphs that students used in this study. These interpretations of expressions on graphs I refer to as (1) nominal, (2) ordinal, (3) cardinal, and (4) magnitude. The findings from this study suggest that different contexts may evoke different graphical interpretations of expressions from the same student. Further, some interpretations were shown to be associated with students correctly evaluating some statements while others were associated with students incorrectly evaluating some statements.

I report the characteristics of these interpretations of expressions in the graphical register and its relation to their evaluations of the statements, the mathematical content of the statements, and their interpretation of points. I also discuss the implications of these findings for teaching and directions for future research in this area.
ContributorsDavid, Erika Johara (Author) / Roh, Kyeong Hah (Thesis advisor) / Thompson, Patrick W (Committee member) / Zandieh, Michelle (Committee member) / Dawkins, Paul C (Committee member) / Zazkis, Dov (Committee member) / Arizona State University (Publisher)
Created2019
161800-Thumbnail Image.png
Description
This dissertation is on the topic of sameness of representation of mathematical entities from a mathematics education perspective. In mathematics, people frequently work with different representations of the same thing. This is especially evident when considering the prevalence of the equals sign (=). I am adopting the three-paper dissertation model.

This dissertation is on the topic of sameness of representation of mathematical entities from a mathematics education perspective. In mathematics, people frequently work with different representations of the same thing. This is especially evident when considering the prevalence of the equals sign (=). I am adopting the three-paper dissertation model. Each paper reports on a study that investigates understandings of the identity relation. The first study directly addresses function identity: how students conceptualize, work with, and assess sameness of representation of function. It uses both qualitative and quantitative methods to examine how students understand function sameness in calculus contexts. The second study is on the topic of implicit differentiation and student understanding of the legitimacy of it as a procedure. This relates to sameness insofar as differentiating an equation is a valid inference when the equation expresses function identity. The third study directly addresses usage of the equals sign (“=”). In particular, I focus on the notion of symmetry; equality is a symmetric relation (truth-functionally), and mathematicians understand it as such. However, results of my study show that usage is not symmetric. This is small qualitative study and incorporates ideas from the field of linguistics.
ContributorsMirin, Alison (Author) / Zazkis, Dov (Thesis advisor) / Dawkins, Paul C. (Committee member) / Thompson, Patrick W. (Committee member) / Milner, Fabio (Committee member) / Kawski, Matthias (Committee member) / Arizona State University (Publisher)
Created2021