Matching Items (7)

Filtering by

Clear all filters

157668-Thumbnail Image.png

Conceptualizing and Reasoning with Frames of Reference in Three Studies

Description

This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference,

This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct of frame of reference. The first paper is a theory paper that introduces the mental actions involved in reasoning with frames of reference. The concept of frames of reference, though commonly used in mathematics and physics, is not described cognitively in any literature. The paper offers a theoretical model of mental actions involved in conceptualizing a frame of reference. Additionally, it posits mental actions that are necessary for a student to reason with multiple frames of reference. It also extends the theory of quantitative reasoning with the construct of a ‘framed quantity’. The second paper investigates how two introductory calculus students who participated in teaching experiments reasoned about changes (variations). The data was analyzed to see to what extent each student conceptualized the variations within a conceptualized frame of reference as described in the first paper. The study found that the extent to which each student conceptualized, coordinated, and combined reference frames significantly affected his ability to reason productively about variations and to make sense of his own answers. The paper ends by analyzing 123 calculus students’ written responses to one of the tasks to build hypotheses about how calculus students reason about variations within frames of reference. The third paper reports how U.S. and Korean secondary mathematics teachers reason with frame of reference on open-response items. An assessment with five frame of reference tasks was given to 539 teachers in the US and Korea, and the responses were coded with rubrics intended to categorize responses by the extent to which they demonstrated conceptualized and coordinated frames of reference. The results show that the theory in the first study is useful in analyzing teachers’ reasoning with frames of reference, and that the items and rubrics function as useful tools in investigating teachers’ meanings for quantities within a frame of reference.

Contributors

Agent

Created

Date Created
  • 2019

157684-Thumbnail Image.png

The Relationships Between Meanings Teachers Hold and Meanings Their Students Construct

Description

This dissertation reports three studies of the relationships between meanings teachers hold and meanings their students construct.

The first paper reports meanings held by U.S. and Korean secondary mathematics teachers

This dissertation reports three studies of the relationships between meanings teachers hold and meanings their students construct.

The first paper reports meanings held by U.S. and Korean secondary mathematics teachers for teaching function notation. This study focuses on what teachers in U.S. and Korean are revealing their thinking from their written responses to the MMTsm (Mathematical Meanings for Teaching secondary mathematics) items, with particular attention to how productive those meanings would be if conveyed to students in a classroom setting. This paper then discusses how the MMTsm serves as a diagnostic instrument by sharing a teacher’s story. The data indicates that many teachers name rules instead of constructing representations of functions through function notation.

The second paper reports the conveyance of meaning with eight Korean teachers who took the MMTsm. The data that I gathered was their responses to the MMTsm, what they said and did in the classroom lessons I observed, pre- and post-lesson interviews with them and their students. This paper focuses on the relationships between teachers’ mathematical meanings and their instructional actions as well as the relationships between teachers’ instructional actions and meanings that their students construct. The data suggests that holding productive meanings is a necessary condition to convey productive meanings to students, but not a sufficient condition.

The third paper investigates the conveyance of meaning with one U.S. teacher. This study explores how a teacher’s image of student thinking influenced her instructional decisions and meanings she conveyed to students. I observed 15 lessons taught by a calculus teacher and interviewed the teacher and her students at multiple points. The results suggest that teachers must think about how students might understand their instructional actions in order to better convey what they intend to their students.

The studies show a breakdown in the conveyance of meaning from teacher to student when the teacher has no image of how students might understand his or her statements and actions. This suggests that it is crucial to help teachers improve what they are capable of conveying to students and their images of what they hope to convey to future students.

Contributors

Agent

Created

Date Created
  • 2019

156865-Thumbnail Image.png

Exponential Growth and Online Learning Environments: Designing for and Studying the Development of Student Meanings in Online Courses

Description

This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place

This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and discuss the implications of these uses for interpreting and leveraging results to produce empirically tested learning trajectories. From my summary and analysis I develop two recommendations for the cognitive researchers developing empirically supported learning trajectories. (1) A researcher should frame his/her work, and analyze others’ work, within the researcher’s image of a broadly coherent trajectory for student learning and (2) that the field should work towards a common understanding for the meaning of a hypothetical learning trajectory.

In Paper 2 I argue that prior research in online learning has tested the impact of online courses on measures such as student retention rates, satisfaction scores, and GPA but that research is needed to describe the meanings students construct for mathematical ideas researchers have identified as critical to their success in future math courses and other STEM fields. This paper discusses the need for a new focus in studying online mathematics learning and calls for cognitive researchers to begin developing a productive methodology for examining the meanings students construct while engaged in online lessons.

Paper 3 describes the online Precalculus course intervention we designed around measurement imagery and quantitative reasoning as themes that unite topics across units. I report results relative to the meanings students developed for exponential functions and related ideas (such as percent change and growth factors) while working through lessons in the intervention. I provide a conceptual analysis guiding its design and discuss pre-test and pre-interview results, post-test and post-interview results, and observations from student behaviors while interacting with lessons. I demonstrate that the targeted meanings can be productive for students, show common unproductive meanings students possess as they enter Precalculus, highlight challenges and opportunities in teaching and learning in the online environment, and discuss needed adaptations to the intervention and future research opportunities informed by my results.

Contributors

Agent

Created

Date Created
  • 2018

151965-Thumbnail Image.png

Students' ways of thinking about combinatorics solution sets

Description

Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative

Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In particular, the focus was on the stable patterns of reasoning, known as ways of thinking, which students applied in a variety of combinatorial situations and tasks. This study catalogued students' ways of thinking about solution sets as they progressed through an instructional sequence. In addition, the relationships between the catalogued ways of thinking were explored. Further, the study investigated the challenges students experienced as they interacted with the tasks and instructional interventions, and how students' ways of thinking evolved as these challenges were overcome. Finally, it examined the role of instruction in guiding students to develop and extend their ways of thinking. Two pairs of undergraduate students with no formal experience with combinatorics participated in one of the two consecutive teaching experiments conducted in Spring 2012. Many ways of thinking emerged through the grounded theory analysis of the data, but only eight were identified as robust. These robust ways of thinking were classified into three categories: Subsets, Odometer, and Problem Posing. The Subsets category encompasses two ways of thinking, both of which ultimately involve envisioning the solution set as the union of subsets. The three ways of thinking in Odometer category involve holding an item or a set of items constant and systematically varying the other items involved in the counting process. The ways of thinking belonging to Problem Posing category involve spontaneously posing new, related combinatorics problems and finding relationships between the solution sets of the original and the new problem. The evolution of students' ways of thinking in the Problem Posing category was analyzed. This entailed examining the perturbation experienced by students and the resulting accommodation of their thinking. It was found that such perturbation and its resolution was often the result of an instructional intervention. Implications for teaching practice are discussed.

Contributors

Agent

Created

Date Created
  • 2013

157632-Thumbnail Image.png

Students’ Interpretations of Expressions in the Graphical Register and Its Relation to Their Interpretation of Points on Graphs when Evaluating Statements about Functions from Calculus

Description

Functions represented in the graphical register, as graphs in the Cartesian plane, are found throughout secondary and undergraduate mathematics courses. In the study of Calculus, specifically, graphs of functions are

Functions represented in the graphical register, as graphs in the Cartesian plane, are found throughout secondary and undergraduate mathematics courses. In the study of Calculus, specifically, graphs of functions are particularly prominent as a means of illustrating key concepts. Researchers have identified that some of the ways that students may interpret graphs are unconventional, which may impact their understanding of related mathematical content. While research has primarily focused on how students interpret points on graphs and students’ images related to graphs as a whole, details of how students interpret and reason with variables and expressions on graphs of functions have remained unclear.

This dissertation reports a study characterizing undergraduate students’ interpretations of expressions in the graphical register with statements from Calculus, its association with their evaluations of these statements, its relation to the mathematical content of these statements, and its relation to their interpretations of points on graphs. To investigate students’ interpretations of expressions on graphs, I conducted 150-minute task-based clinical interviews with 13 undergraduate students who had completed Calculus I with a range of mathematical backgrounds. In the interviews, students were asked to evaluate propositional statements about functions related to key definitions and theorems of Calculus and were provided various graphs of functions to make their evaluations. The central findings from this study include the characteristics of four distinct interpretations of expressions on graphs that students used in this study. These interpretations of expressions on graphs I refer to as (1) nominal, (2) ordinal, (3) cardinal, and (4) magnitude. The findings from this study suggest that different contexts may evoke different graphical interpretations of expressions from the same student. Further, some interpretations were shown to be associated with students correctly evaluating some statements while others were associated with students incorrectly evaluating some statements.

I report the characteristics of these interpretations of expressions in the graphical register and its relation to their evaluations of the statements, the mathematical content of the statements, and their interpretation of points. I also discuss the implications of these findings for teaching and directions for future research in this area.

Contributors

Agent

Created

Date Created
  • 2019

155768-Thumbnail Image.png

Examining the development of students' covariational reasoning in the context of graphing

Description

Researchers have documented the importance of seeing a graph as an emergent trace of how two quantities’ values vary simultaneously in order to reason about the graph in terms of

Researchers have documented the importance of seeing a graph as an emergent trace of how two quantities’ values vary simultaneously in order to reason about the graph in terms of quantitative relationships. If a student does not see a graph as a representation of how quantities change together then the student is limited to reasoning about perceptual features of the shape of the graph.

This dissertation reports results of an investigation into the ways of thinking that support and inhibit students from constructing and reasoning about graphs in terms of covarying quantities. I collected data by engaging three university precalculus students in asynchronous teaching experiments. I designed the instructional sequence to support students in making three constructions: first imagine representing quantities’ magnitudes along the axes, then simultaneously represent these magnitudes with a correspondence point in the plane, and finally anticipate tracking the correspondence point to track how the two quantities’ attributes change simultaneously.

Findings from this investigation provide insights into how students come to engage in covariational reasoning and re-present their imagery in their graphing actions. The data presented here suggests that it is nontrivial for students to coordinate their images of two varying quantities. This is significant because without a way to coordinate two quantities’ variation the student is limited to engaging in static shape thinking.

I describe three types of imagery: a correspondence point, Tinker Bell and her pixie dust, and an actor taking baby steps, that supported students in developing ways to coordinate quantities’ variation. I discuss the figurative aspects of the students’ coordination in order to account for the difficulties students had (1) constructing a multiplicative object that persisted under variation, (2) reconstructing their acts of covariation in other graphing tasks, and (3) generalizing these acts of covariation to reason about formulas in terms of covarying quantities.

Contributors

Agent

Created

Date Created
  • 2017

158397-Thumbnail Image.png

Students’ Quantifications, Interpretations, and Negations of Complex Mathematical Statements from Calculus

Description

This study investigates several students’ interpretations and meanings for negations of various mathematical statements with quantifiers, and how their meanings for quantified variables impact their interpretations and denials of these

This study investigates several students’ interpretations and meanings for negations of various mathematical statements with quantifiers, and how their meanings for quantified variables impact their interpretations and denials of these quantified statements. Eight students participated in three separate exploratory teaching interviews and were selected from Transition-to-Proof and advanced mathematics courses beyond Transition-to-Proof. In the first interview, students were asked to interpret mathematical statements from Calculus contexts and provide justifications and refutations for why these statements are true or false in particular situations. In the second interview, students were asked to negate the same set of mathematical statements. Both sets of interviews were analyzed to determine students’ meanings for the quantified variables in the statements, and then these meanings were used to determine how students’ quantifications influenced their interpretations, denials, and evaluations for the quantified statements. In the final interview, students were also be asked to interpret and negation statements from different mathematical contexts. All three interviews were used to determine what meanings comprised students’ interpretations and denials for the given statements. Additionally, students’ interpretations and negations across different statements in the interviews were analyzed and then compared within students and across students to determine if there were differences in student denials across different moments.

Contributors

Agent

Created

Date Created
  • 2020