Matching Items (9)
Filtering by

Clear all filters

151965-Thumbnail Image.png
Description
Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In

Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In particular, the focus was on the stable patterns of reasoning, known as ways of thinking, which students applied in a variety of combinatorial situations and tasks. This study catalogued students' ways of thinking about solution sets as they progressed through an instructional sequence. In addition, the relationships between the catalogued ways of thinking were explored. Further, the study investigated the challenges students experienced as they interacted with the tasks and instructional interventions, and how students' ways of thinking evolved as these challenges were overcome. Finally, it examined the role of instruction in guiding students to develop and extend their ways of thinking. Two pairs of undergraduate students with no formal experience with combinatorics participated in one of the two consecutive teaching experiments conducted in Spring 2012. Many ways of thinking emerged through the grounded theory analysis of the data, but only eight were identified as robust. These robust ways of thinking were classified into three categories: Subsets, Odometer, and Problem Posing. The Subsets category encompasses two ways of thinking, both of which ultimately involve envisioning the solution set as the union of subsets. The three ways of thinking in Odometer category involve holding an item or a set of items constant and systematically varying the other items involved in the counting process. The ways of thinking belonging to Problem Posing category involve spontaneously posing new, related combinatorics problems and finding relationships between the solution sets of the original and the new problem. The evolution of students' ways of thinking in the Problem Posing category was analyzed. This entailed examining the perturbation experienced by students and the resulting accommodation of their thinking. It was found that such perturbation and its resolution was often the result of an instructional intervention. Implications for teaching practice are discussed.
ContributorsHalani, Aviva (Author) / Roh, Kyeong Hah (Thesis advisor) / Fishel, Susanna (Committee member) / Saldanha, Luis (Committee member) / Thompson, Patrick (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2013
153542-Thumbnail Image.png
Description
Industry, academia, and government have spent tremendous amounts of money over several decades trying to improve the mathematical abilities of students. They have hoped that improvements in students' abilities will have an impact on adults' mathematical abilities in an increasingly technology-based workplace. This study was conducted to begin

Industry, academia, and government have spent tremendous amounts of money over several decades trying to improve the mathematical abilities of students. They have hoped that improvements in students' abilities will have an impact on adults' mathematical abilities in an increasingly technology-based workplace. This study was conducted to begin checking for these impacts. It examined how nine adults in their workplace solved problems that purportedly entailed proportional reasoning and supporting rational number concepts (cognates).

The research focused on four questions: a) in what ways do workers encounter and utilize the cognates while on the job; b) do workers engage cognate problems they encounter at work differently from similar cognate problems found in a textbook; c) what mathematical difficulties involving the cognates do workers experience while on the job, and; d) what tools, techniques, and social supports do workers use to augment or supplant their own abilities when confronted with difficulties involving the cognates.

Noteworthy findings included: a) individual workers encountered cognate problems at a rate of nearly four times per hour; b) all of the workers engaged the cognates primarily via discourse with others and not by written or electronic means; c) generally, workers had difficulty with units and solving problems involving intensive ratios; d) many workers regularly used a novel form of guess & check to produce a loose estimate as an answer; and e) workers relied on the social structure of the store to mitigate the impact and defuse the responsibility for any errors they made.

Based on the totality of the evidence, three hypotheses were discussed: a) the binomial aspect of a conjecture that stated employees were hired either with sufficient mathematical skills or with deficient skills was rejected; b) heuristics, tables, and stand-ins were maximally effective only if workers individually developed them after a need was recognized; and c) distributed cognition was rejected as an explanatory framework by arguing that the studied workers and their environment formed a system that was itself a heuristic on a grand scale.
ContributorsOrletsky, Darryl William (Author) / Middleton, James (Thesis advisor) / Greenes, Carole (Committee member) / Judson, Eugene (Committee member) / Arizona State University (Publisher)
Created2015
149801-Thumbnail Image.png
Description
This study contributes to the ongoing discussion of Mathematical Knowledge for Teaching (MKT). It investigates the case of Rico, a high school mathematics teacher who had become known to his colleagues and his students as a superbly effective mathematics teacher. His students not only developed excellent mathematical skills, they also

This study contributes to the ongoing discussion of Mathematical Knowledge for Teaching (MKT). It investigates the case of Rico, a high school mathematics teacher who had become known to his colleagues and his students as a superbly effective mathematics teacher. His students not only developed excellent mathematical skills, they also developed deep understanding of the mathematics they learned. Moreover, Rico redesigned his curricula and instruction completely so that they provided a means of support for his students to learn mathematics the way he intended. The purpose of this study was to understand the sources of Rico's effectiveness. The data for this study was generated in three phases. Phase I included videos of Rico's lessons during one semester of an Algebra II course, post-lesson reflections, and Rico's self-constructed instructional materials. An analysis of Phase I data led to Phase II, which consisted of eight extensive stimulated-reflection interviews with Rico. Phase III consisted of a conceptual analysis of the prior phases with the aim of creating models of Rico's mathematical conceptions, his conceptions of his students' mathematical understandings, and his images of instruction and instructional design. Findings revealed that Rico had developed profound personal understandings, grounded in quantitative reasoning, of the mathematics that he taught, and profound pedagogical understandings that supported these very same ways of thinking in his students. Rico's redesign was driven by three factors: (1) the particular way in which Rico himself understood the mathematics he taught, (2) his reflective awareness of those ways of thinking, and (3) his ability to envision what students might learn from different instructional approaches. Rico always considered what someone might already need to understand in order to understand "this" in the way he was thinking of it, and how understanding "this" might help students understand related ideas or methods. Rico's continual reflection on the mathematics he knew so as to make it more coherent, and his continual orientation to imagining how these meanings might work for students' learning, made Rico's mathematics become a mathematics of students--impacting how he assessed his practice and engaging him in a continual process of developing MKT.
ContributorsLage Ramírez, Ana Elisa (Author) / Thompson, Patrick W. (Thesis advisor) / Carlson, Marilyn P. (Committee member) / Castillo-Chavez, Carlos (Committee member) / Saldanha, Luis (Committee member) / Middleton, James A. (Committee member) / Arizona State University (Publisher)
Created2011
150539-Thumbnail Image.png
Description
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.
ContributorsWeber, Eric David (Author) / Thompson, Patrick (Thesis advisor) / Middleton, James (Committee member) / Carlson, Marilyn (Committee member) / Saldanha, Luis (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2012
136121-Thumbnail Image.png
Description
The focus of this study was to examine how a student's understanding of function notation impacted their approaches to problem solving. Before this question could be answered, students' understandings about function notation had to be determined. The goal of the first part of the data was to determine the norm

The focus of this study was to examine how a student's understanding of function notation impacted their approaches to problem solving. Before this question could be answered, students' understandings about function notation had to be determined. The goal of the first part of the data was to determine the norm of understanding for function notation for students after taking a college level pre-calculus class. From the data collected, several ideas about student understanding of notation emerged. The goal of the second data set was to determine if student understanding of notation impacted their reasoning while problem solving, and if so, how it impacted their reasoning. Collected data suggests that much of what students "understand" about function notation comes from memorized procedures and that the notation may have little or no meaning for students in context. Evidence from this study indicates that this lack of understanding of function notation does negatively impact student's ability to solve context based problems. In order to build a strong foundation of function, a well-developed understanding of function notation is necessary. Because function notation is a widely accepted way of communicating information about function relationships, understanding its uses and meanings in context is imperative for developing a strong foundation that will allow individuals to approach functions in a meaningful and productive manner.
ContributorsLe, Lesley Kim (Author) / Carlson, Marilyn (Thesis director) / Greenes, Carole (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2015-05
137221-Thumbnail Image.png
Description
This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University

This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University initially identified mental actions that we conjectured were needed for constructing meaningful linear formulas. This guided the development of tasks for the sequence of clinical interviews with one high-performing precalculus student. Analysis of the interview data revealed that in instances when the subject engaged in meaning making that led to him imagining and identifying the relevant quantities and how they change together, he was able to give accurate definitions of variables and was usually able to define a formula to relate the two quantities of interest. However, we found that the student sometimes had difficulty imagining how the two quantities of interest were changing together. At other times he exhibited a weak understanding of the operation of subtraction and the idea of constant rate of change. He did not appear to conceptualize subtraction as a quantitative comparison. His inability to conceptualize a constant rate of change as a proportional relationship between the changes in two quantities also presented an obstacle in his developing a meaningful formula that relied on this understanding. The results further stress the need to develop a student's ability to engage in mental operations that involve covarying quantities and a more robust understanding of constant rate of change since these abilities and understanding are critical for student success in future courses in mathematics.
ContributorsKlinger, Tana Paige (Author) / Carlson, Marilyn (Thesis director) / Thompson, Pat (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
153836-Thumbnail Image.png
Description
Teachers must recognize the knowledge they possess as appropriate to employ in the process of achieving their goals and objectives in the context of practice. Such recognition is subject to a host of cognitive and affective processes that have thus far not been a central focus of research on teacher

Teachers must recognize the knowledge they possess as appropriate to employ in the process of achieving their goals and objectives in the context of practice. Such recognition is subject to a host of cognitive and affective processes that have thus far not been a central focus of research on teacher knowledge in mathematics education. To address this need, this dissertation study examined the role of a secondary mathematics teacher’s image of instructional constraints on his enacted subject matter knowledge. I collected data in three phases. First, I conducted a series of task-based clinical interviews that allowed me to construct a model of David’s mathematical knowledge of sine and cosine functions. Second, I conducted pre-lesson interviews, collected journal entries, and examined David’s instruction to characterize the mathematical knowledge he utilized in the context of designing and implementing lessons. Third, I conducted a series of semi-structured clinical interviews to identify the circumstances David appraised as constraints on his practice and to ascertain the role of these constraints on the quality of David’s enacted subject matter knowledge. My analysis revealed that although David possessed many productive ways of understanding that allowed him to engage students in meaningful learning experiences, I observed discrepancies between and within David’s mathematical knowledge and his enacted mathematical knowledge. These discrepancies were not occasioned by David’s active compensation for the circumstances and events he appraised as instructional constraints, but instead resulted from David possessing multiple schemes for particular ideas related to trigonometric functions, as well as from his unawareness of the mental actions and operations that comprised these often powerful but uncoordinated cognitive schemes. This lack of conscious awareness made David ill-equipped to define his instructional goals in terms of the mental activity in which he intended his students to engage, which further conditioned the circumstances and events he appraised as constraints on his practice. David’s image of instructional constraints therefore did not affect his enacted subject matter knowledge. Rather, characteristics of David’s subject matter knowledge, namely his uncoordinated cognitive schemes and his unawareness of the mental actions and operations that comprise them, affected his image of instructional constraints.
ContributorsTallman, Michael Anthony (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Saldanha, Luis (Committee member) / Middleton, James (Committee member) / Harel, Guershon (Committee member) / Arizona State University (Publisher)
Created2015
155002-Thumbnail Image.png
Description
This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction, measure, and rate of change is critical for each study.

This dissertation reports three studies of students’ and teachers’ meanings for quotient, fraction, measure, rate, and rate of change functions. Each study investigated individual’s schemes (or meanings) for foundational mathematical ideas. Conceptual analysis of what constitutes strong meanings for fraction, measure, and rate of change is critical for each study. In particular, each study distinguishes additive and multiplicative meanings for fraction and rate of change.

The first paper reports an investigation of 251 high school mathematics teachers’ meanings for slope, measurement, and rate of change. Most teachers conveyed primarily additive and formulaic meanings for slope and rate of change on written items. Few teachers conveyed that a rate of change compares the relative sizes of changes in two quantities. Teachers’ weak measurement schemes were associated with limited meanings for rate of change. Overall, the data suggests that rate of change should be a topics of targeted professional development.

The second paper reports the quantitative part of a mixed method study of 153 calculus students at a large public university. The majority of calculus students not only have weak meanings for fraction, measure, and constant rates but that having weak meanings is predictive of lower scores on a test about rate of change functions. Regression is used to determine the variation in student success on questions about rate of change functions (derivatives) associated with variation in success on fraction, measure, rate, and covariation items.

The third paper investigates the implications of two students’ fraction schemes for their understanding of rate of change functions. Students’ weak measurement schemes obstructed their ability to construct a rate of change function given the graph of an original function. The two students did not coordinate three levels of units, and struggled to relate partitioning and iterating in a way that would help them reason about fractions, rate of change, and rate of change functions.

Taken as a whole the studies show that the majority of secondary teachers and calculus students studied have weak meanings for foundational ideas and that these weaknesses cause them problems in making sense of more applications of rate of change.
ContributorsByerley, Cameron (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn P (Committee member) / Middleton, James A. (Committee member) / Saldanha, Luis (Committee member) / Mcnamara, Allen (Committee member) / Arizona State University (Publisher)
Created2016
149628-Thumbnail Image.png
Description
The focus of the study was to identify secondary school students' difficulties with aspects of linearity and linear functions, and to assess their teachers' understanding of the nature of the difficulties experienced by their students. A cross-sectional study with 1561 Grades 8-10 students enrolled in mathematics courses from Pre-Algebra to

The focus of the study was to identify secondary school students' difficulties with aspects of linearity and linear functions, and to assess their teachers' understanding of the nature of the difficulties experienced by their students. A cross-sectional study with 1561 Grades 8-10 students enrolled in mathematics courses from Pre-Algebra to Algebra II, and their 26 mathematics teachers was employed. All participants completed the Mini-Diagnostic Test (MDT) on aspects of linearity and linear functions, ranked the MDT problems by perceived difficulty, and commented on the nature of the difficulties. Interviews were conducted with 40 students and 20 teachers. A cluster analysis revealed the existence of two groups of students, Group 0 enrolled in courses below or at their grade level, and Group 1 enrolled in courses above their grade level. A factor analysis confirmed the importance of slope and the Cartesian connection for student understanding of linearity and linear functions. There was little variation in student performance on the MDT across grades. Student performance on the MDT increased with more advanced courses, mainly due to Group 1 student performance. The most difficult problems were those requiring identification of slope from the graph of a line. That difficulty persisted across grades, mathematics courses, and performance groups (Group 0, and 1). A comparison of student ranking of MDT problems by difficulty and their performance on the MDT, showed that students correctly identified the problems with the highest MDT mean scores as being least difficult for them. Only Group 1 students could identify some of the problems with lower MDT mean scores as being difficult. Teachers did not identify MDT problems that posed the greatest difficulty for their students. Student interviews confirmed difficulties with slope and the Cartesian connection. Teachers' descriptions of problem difficulty identified factors such as lack of familiarity with problem content or context, problem format and length. Teachers did not identify student difficulties with slope in a geometric context.
ContributorsPostelnicu, Valentina (Author) / Greenes, Carole (Thesis advisor) / Pambuccian, Victor (Committee member) / Sloane, Finbarr (Committee member) / Arizona State University (Publisher)
Created2011