Matching Items (14)
Filtering by

Clear all filters

151965-Thumbnail Image.png
Description
Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In

Research on combinatorics education is sparse when compared with other fields in mathematics education. This research attempted to contribute to the dearth of literature by examining students' reasoning about enumerative combinatorics problems and how students conceptualize the set of elements being counted in such problems, called the solution set. In particular, the focus was on the stable patterns of reasoning, known as ways of thinking, which students applied in a variety of combinatorial situations and tasks. This study catalogued students' ways of thinking about solution sets as they progressed through an instructional sequence. In addition, the relationships between the catalogued ways of thinking were explored. Further, the study investigated the challenges students experienced as they interacted with the tasks and instructional interventions, and how students' ways of thinking evolved as these challenges were overcome. Finally, it examined the role of instruction in guiding students to develop and extend their ways of thinking. Two pairs of undergraduate students with no formal experience with combinatorics participated in one of the two consecutive teaching experiments conducted in Spring 2012. Many ways of thinking emerged through the grounded theory analysis of the data, but only eight were identified as robust. These robust ways of thinking were classified into three categories: Subsets, Odometer, and Problem Posing. The Subsets category encompasses two ways of thinking, both of which ultimately involve envisioning the solution set as the union of subsets. The three ways of thinking in Odometer category involve holding an item or a set of items constant and systematically varying the other items involved in the counting process. The ways of thinking belonging to Problem Posing category involve spontaneously posing new, related combinatorics problems and finding relationships between the solution sets of the original and the new problem. The evolution of students' ways of thinking in the Problem Posing category was analyzed. This entailed examining the perturbation experienced by students and the resulting accommodation of their thinking. It was found that such perturbation and its resolution was often the result of an instructional intervention. Implications for teaching practice are discussed.
ContributorsHalani, Aviva (Author) / Roh, Kyeong Hah (Thesis advisor) / Fishel, Susanna (Committee member) / Saldanha, Luis (Committee member) / Thompson, Patrick (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2013
152954-Thumbnail Image.png
Description
ABSTRACT

The early desire for and the pursuit of literacy are often mentioned in the teeming volumes devoted to African-American history. However, stories, facts, and figures about the acquisition of numeracy by African Americans have not been equally documented.

The focus of this study was to search for the third R, this

ABSTRACT

The early desire for and the pursuit of literacy are often mentioned in the teeming volumes devoted to African-American history. However, stories, facts, and figures about the acquisition of numeracy by African Americans have not been equally documented.

The focus of this study was to search for the third R, this is the numeracy and mathematics experiences of African Americans who were born in, and before, 1933. The investigation of this generational cadre was pursued in order to develop oral histories and narratives going back to the early 1900s. This study examined formal and informal education and other relevant mathematics-related, lived experiences of unacknowledged and unheralded African Americans, as opposed to the American anomalies of African descent who are most often acknowledged, such as the Benjamin Bannekers, the George Washington Carvers, and other notables.



Quantitative and qualitative data were collected through the use of a survey and interviews. Quantitative results and qualitative findings were blended to present a nuanced perspective of African Americans learning mathematics during a period of Jim Crow, segregation, and discrimination. Their hopes, their fears, their challenges, their aspirations, their successes, and their failures are all tangential to their overall goal of seeking education, including mathematics education, in the early twentieth century. Both formal and informal experiences revealed a picture of life during those times to further enhance the literature regarding the mathematics experiences of African Americans.

Key words: Black students, historical, senior citizens, mathematics education, oral history, narrative, narrative inquiry, socio-cultural theory, Jim Crow
ContributorsLaCount, Marilyn Ruth (Author) / Zambo, Ronald (Thesis advisor) / Flores, Alfinio (Committee member) / Koblitz, Ann Hibner (Committee member) / Zambo, Debby (Committee member) / Arizona State University (Publisher)
Created2014
150081-Thumbnail Image.png
Description
A fundamental motivation for this study was the underrepresentation of women in Science, Technology, Engineering and Mathematics careers. There is no doubt women and men can achieve at the same level in Mathematics, yet it is not clear why women are opting out. Adding race to the equation makes the

A fundamental motivation for this study was the underrepresentation of women in Science, Technology, Engineering and Mathematics careers. There is no doubt women and men can achieve at the same level in Mathematics, yet it is not clear why women are opting out. Adding race to the equation makes the underrepresentation more dramatic. Considering the important number of Latinos in the United States, especially in school age, it is relevant to find what reasons could be preventing them from participating in the careers mentioned. This study highlight the experiences young successful Latinas have in school Mathematics and how they shape their identities, to uncover potential conflicts that could later affect their participation in the field. In order to do so the author utilizes feminist approaches, Latino Critical Theory and Critical Race Theory to analyze the stories compiled. The participants were five successful Latinas in Mathematics, part of the honors track in a school in the Southwest of the United States. The theoretical lenses chosen allowed women of color to tell their story, highlighting the intersection of race, gender and socio-economical status as a factor shaping different schooling experiences. The author found that the participants distanced themselves from their home culture and from other girls at times to allow themselves to develop and maintain a successful identity as a Mathematics student. When talking about Latinos and their culture, the participants shared a view of themselves as proud Latinas who would prove others what Latinas can do. During other times while discussing the success of Latinos in Mathematics, they manifested Latinos were lazy and distance themselves from that stereotype. Similar examples about gender and Mathematics can be found in the study. The importance of the family as a motivator for their success was clear, despite the participants' concern that parents cannot offer certain types of help they feel they need. This was manifest in a tension regarding who owns the "right" Mathematics at home. Results showed that successful Latinas in the US may undergo a constant negotiation of conflicting discourses that force them to distance themselves from certain aspects of their culture, gender, and even their families, to maintain an identity of success in mathematics.
ContributorsGuerra Lombardi, Paula Patricia (Author) / Middleton, James (Thesis advisor) / Battey, Daniel (Committee member) / Koblitz, Ann (Committee member) / Flores, Alfinio (Committee member) / Arizona State University (Publisher)
Created2011
150539-Thumbnail Image.png
Description
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.
ContributorsWeber, Eric David (Author) / Thompson, Patrick (Thesis advisor) / Middleton, James (Committee member) / Carlson, Marilyn (Committee member) / Saldanha, Luis (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2012
151175-Thumbnail Image.png
Description
The primary purpose of this study is to examine the effect of knowledge for teaching mathematics and teaching practice on student mathematics achievement growth. Thirty two teachers and 299 fourth grade students in three elementary schools from one school district in urban area participated in the study. Most of them

The primary purpose of this study is to examine the effect of knowledge for teaching mathematics and teaching practice on student mathematics achievement growth. Thirty two teachers and 299 fourth grade students in three elementary schools from one school district in urban area participated in the study. Most of them are Hispanic in origin and about forty percent is English Language Learners (ELLs). The two level Hierarchical Linear Model (HLM) was used to investigate repeated measures of teaching practice measured by Classroom Assessment Scoring System (CLASS) instrument. Also, linear regression and a multiple regression to examine the relationship between teacher knowledge measured by Learning for Mathematics Teaching (LMT) and Developing Mathematical Ideas (DMI) items and teaching practice were employed. In addition, a three level HLM was employed to analyze repeated measures of student mathematics achievement measured by Arizona Assessment Consortium (AzAC) instruments. Results showed that overall teaching practice did not change weekly although teachers' emotional support for their students improved by week. Furthermore, a statistically significant relationship between teacher knowledge and teaching practice was not found. In terms of student learning, ELLs have significantly lower initial status in mathematics achievement than non-ELLs, as were growth rates for these two groups. Lastly, teaching practice significantly predicted students' monthly mathematics achievement growth but teacher knowledge did not. The findings suggest that school systems and education policy makers need to provide teachers with the chance to reflect on their teaching and change it within themselves in order to better support student mathematics learning.
ContributorsKim, Seong Hee (Author) / Sloane, Finbarr (Thesis advisor) / Middleton, James (Committee member) / Flores, Alfinio (Committee member) / Arizona State University (Publisher)
Created2012
156439-Thumbnail Image.png
Description
There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document,

There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document, I present the three papers of my dissertation study. The first paper examines two students’ development of concepts foundational to the idea of logarithm. This paper discusses two essential understandings that were revealed to be problematic and essential for students’ development of productive meanings for exponents, logarithms and logarithmic properties. The findings of this study informed my later work to support students in understanding logarithms, their properties and logarithmic functions. The second paper examines two students’ development of the idea of logarithm. This paper describes the reasoning abilities two students exhibited as they engaged with tasks designed to foster their construction of more productive meanings for the idea of logarithm. The findings of this study provide novel insights for supporting students in understanding the idea of logarithm meaningfully. Finally, the third paper begins with an examination of the historical development of the idea of logarithm. I then leveraged the insights of this literature review and the first two papers to perform a conceptual analysis of what is involved in learning and understanding the idea of logarithm. The literature review and conceptual analysis contributes novel and useful information for curriculum developers, instructors, and other researchers studying student learning of this idea.
ContributorsKuper Flores, Emily Ginamarie (Author) / Carlson, Marilyn (Thesis advisor) / Thompson, Patrick (Committee member) / Milner, Fabio (Committee member) / Zazkis, Dov (Committee member) / Czocher, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
157227-Thumbnail Image.png
Description
The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic

The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic process students develop as they work through materials intended to support them in constructing the long-run behavior meaning for distribution.

I collected data in three phases. First, I conducted a set of task-based clinical interviews that allowed me to build initial models for the students’ meanings for randomness and probability. Second, I worked with Bonnie in an exploratory teaching setting through three sets of activities to see what meanings she would develop for randomness and stochastic process. The final phase consisted of me working with Danielle as she worked through the same activities as Bonnie but this time in teaching experiment setting where I used a series of interventions to test out how Danielle was thinking about stochastic processes.

My analysis shows that students can be aware that the word “random” lives in two worlds, thereby having conflicting meanings. Bonnie’s meaning for randomness evolved over the course of the study from an unproductive meaning centered on the emotions of the characters in the context to a meaning that randomness is the lack of a pattern. Bonnie’s lack of pattern meaning for randomness subsequently underpinned her image of stochastic/processes, leading her to engage in pattern-hunting behavior every time she needed to classify a process as stochastic or not. Danielle’s image of a stochastic process was grounded in whether she saw the repetition as being reproducible (process can be repeated, and outcomes are identical to prior time through the process) or replicable (process can be repeated but the outcomes aren’t in the same order as before). Danielle employed a strategy of carrying out several trials of the process, resetting the applet, and then carrying out the process again, making replicability central to her thinking.
ContributorsHatfield, Neil (Author) / Thompson, Patrick (Thesis advisor) / Carlson, Marilyn (Committee member) / Middleton, James (Committee member) / Lehrer, Richard (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2019
133862-Thumbnail Image.png
Description
Previous research has examined difficulties that students have with understanding and productively working with function notation. Function notation is very prevalent throughout mathematics education, helping students to better understand and more easily work with functions. The goal of my research was to investigate students' current ways of thinking about function

Previous research has examined difficulties that students have with understanding and productively working with function notation. Function notation is very prevalent throughout mathematics education, helping students to better understand and more easily work with functions. The goal of my research was to investigate students' current ways of thinking about function notation to better assist teachers in helping their students develop deeper and more productive understandings. In this study, I conducted two separate interviews with two undergraduate students to explore their meanings for function notation. I developed and adapted tasks aimed at investigating different aspects and uses of function notation. In each interview, I asked the participants to attempt each of the tasks, explaining their thoughts as they worked. While they were working, I occasionally asked clarifying questions to better understand their thought processes. For the second interviews, I added tasks based on difficulties I found in the first interviews. I video recorded each interview for later analysis. Based on the data found in the interviews, I will discuss the seven prevalent ways of thinking that I found, how they hindered or facilitated working with function notation productively, and suggestions for instruction to better help students understand the concept.
ContributorsMckee, Natalie Christina (Author) / Thompson, Patrick (Thesis director) / Zazkis, Dov (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137221-Thumbnail Image.png
Description
This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University

This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University initially identified mental actions that we conjectured were needed for constructing meaningful linear formulas. This guided the development of tasks for the sequence of clinical interviews with one high-performing precalculus student. Analysis of the interview data revealed that in instances when the subject engaged in meaning making that led to him imagining and identifying the relevant quantities and how they change together, he was able to give accurate definitions of variables and was usually able to define a formula to relate the two quantities of interest. However, we found that the student sometimes had difficulty imagining how the two quantities of interest were changing together. At other times he exhibited a weak understanding of the operation of subtraction and the idea of constant rate of change. He did not appear to conceptualize subtraction as a quantitative comparison. His inability to conceptualize a constant rate of change as a proportional relationship between the changes in two quantities also presented an obstacle in his developing a meaningful formula that relied on this understanding. The results further stress the need to develop a student's ability to engage in mental operations that involve covarying quantities and a more robust understanding of constant rate of change since these abilities and understanding are critical for student success in future courses in mathematics.
ContributorsKlinger, Tana Paige (Author) / Carlson, Marilyn (Thesis director) / Thompson, Pat (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
137023-Thumbnail Image.png
Description
Previous research discusses students' difficulties in grasping an operational understanding of covariational reasoning. In this study, I interviewed four undergraduate students in calculus and pre-calculus classes to determine their ways of thinking when working on an animated covariation problem. With previous studies in mind and with the use of technology,

Previous research discusses students' difficulties in grasping an operational understanding of covariational reasoning. In this study, I interviewed four undergraduate students in calculus and pre-calculus classes to determine their ways of thinking when working on an animated covariation problem. With previous studies in mind and with the use of technology, I devised an interview method, which I structured using multiple phases of pre-planned support. With these interviews, I gathered information about two main aspects about students' thinking: how students think when attempting to reason covariationally and which of the identified ways of thinking are most propitious for the development of an understanding of covariational reasoning. I will discuss how, based on interview data, one of the five identified ways of thinking about covariational reasoning is highly propitious, while the other four are somewhat less propitious.
ContributorsWhitmire, Benjamin James (Author) / Thompson, Patrick (Thesis director) / Musgrave, Stacy (Committee member) / Moore, Kevin C. (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2014-05