Matching Items (18)
Filtering by

Clear all filters

151831-Thumbnail Image.png
Description
The need for improved mathematics education in many of America's schools that serve students from low income households has been extensively documented. This practical action research study, set in a suburban Title I school with a primarily Hispanic, non-native English speaking population, is designed to explore the effects of the

The need for improved mathematics education in many of America's schools that serve students from low income households has been extensively documented. This practical action research study, set in a suburban Title I school with a primarily Hispanic, non-native English speaking population, is designed to explore the effects of the progression through a set of problem solving solution strategies on the mathematics problem solving abilities of 2nd grade students. Students worked in class with partners to complete a Cognitively Guided Instruction-style (CGI) mathematics word problem using a dictated solution strategy five days a week for twelve weeks, three or four weeks for each of four solution strategies. The phases included acting out the problem using realia, representing the problem using standard mathematics manipulatives, modeling the problem using a schematic representation, and solving the problem using a number sentence. Data were collected using a five question problem solving pre- and post-assessment, video recorded observations, and Daily Answer Recording Slips or Mathematics Problem Solving Journals. Findings showed that this problem solving innovation was effective in increasing the problem solving abilities of all participants in this study, with an average increase of 63% in the number of pre-assessment to post-assessment questions answered correctly. Additionally, students increased the complexity of solutions used to solve problems and decreased the rate of guessing at answers to word problems. Further rounds of research looking into the direct effects of the MKO are suggested as next steps of research.
ContributorsSpilde, Amy (Author) / Zambo, Ronald (Thesis advisor) / Heck, Thomas (Committee member) / Nicoloff, Stephen J. (Committee member) / Arizona State University (Publisher)
Created2013
151525-Thumbnail Image.png
Description
ABSTRACT There is a continuing emphasis in the United States to improve student's mathematical abilities and one approach is to better prepare teachers. This study investigated the effects of using lesson study with preservice secondary mathematics teachers to improve their proficiency at planning and implementing instruction. The participants were students

ABSTRACT There is a continuing emphasis in the United States to improve student's mathematical abilities and one approach is to better prepare teachers. This study investigated the effects of using lesson study with preservice secondary mathematics teachers to improve their proficiency at planning and implementing instruction. The participants were students (preservice teachers) in an undergraduate teacher preparation program at a private university who were enrolled in a mathematics methods course for secondary math teachers. This project used lesson study to engage preservice teachers in collaboratively creating lessons, field testing them, using feedback to revise the lessons, and re-teaching the revised lesson. The preservice teachers worked through multiple cycles of the process in their secondary math methods class receiving feedback from their peers and instructor prior to teaching the lessons in their field experience (practicum). A mixed methods approach was implemented to investigate the preservice teacher's abilities to plan and implement instruction as well as their efficacy for teaching. Data were collected from surveys, video analysis, student reflections, and semi-structured interviews. The findings from this study indicate that lesson study for preservice teachers was an effective means of teacher education. Lesson study positively impacted the preservice teachers' ability to plan and teach mathematical lessons more effectively. The preservice teachers successfully transitioned from teaching in the methods classroom to their field experience classroom during this innovation. Further, the efficacy of the preservice teachers to teach secondary mathematics increased based on this innovation. Further action research cycles of lesson study with preservice teachers are recommended.
ContributorsMostofo, Jameel (Author) / Zambo, Ronald (Thesis advisor) / Elliott, Sherman (Committee member) / Heck, Thomas (Committee member) / Arizona State University (Publisher)
Created2013
152807-Thumbnail Image.png
Description
Based on poor student performance in past studies, the incoherence present in the teaching of inverse functions, and teachers' own accounts of their struggles to teach this topic, it is apparent that the idea of function inverse deserves a closer look and an improved pedagogical approach. This improvement must enhance

Based on poor student performance in past studies, the incoherence present in the teaching of inverse functions, and teachers' own accounts of their struggles to teach this topic, it is apparent that the idea of function inverse deserves a closer look and an improved pedagogical approach. This improvement must enhance students' opportunity to construct a meaning for a function's inverse and, out of that meaning, produce ways to define a function's inverse without memorizing some procedure. This paper presents a proposed instructional sequence that promotes reflective abstraction in order to help students develop a process conception of function and further understand the meaning of a function inverse. The instructional sequence was used in a teaching experiment with three subjects and the results are presented here. The evidence presented in this paper supports the claim that the proposed instructional sequence has the potential to help students construct meanings needed for understanding function inverse. The results of this study revealed shifts in the understandings of all three subjects. I conjecture that these shifts were achieved by posing questions that promoted reflective abstraction. The questions and subsequent interactions appeared to result in all three students moving toward a process conception of function.
ContributorsFowler, Bethany (Author) / Carlson, Marilyn (Thesis advisor) / Roh, Kyeong (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2014
152954-Thumbnail Image.png
Description
ABSTRACT

The early desire for and the pursuit of literacy are often mentioned in the teeming volumes devoted to African-American history. However, stories, facts, and figures about the acquisition of numeracy by African Americans have not been equally documented.

The focus of this study was to search for the third R, this

ABSTRACT

The early desire for and the pursuit of literacy are often mentioned in the teeming volumes devoted to African-American history. However, stories, facts, and figures about the acquisition of numeracy by African Americans have not been equally documented.

The focus of this study was to search for the third R, this is the numeracy and mathematics experiences of African Americans who were born in, and before, 1933. The investigation of this generational cadre was pursued in order to develop oral histories and narratives going back to the early 1900s. This study examined formal and informal education and other relevant mathematics-related, lived experiences of unacknowledged and unheralded African Americans, as opposed to the American anomalies of African descent who are most often acknowledged, such as the Benjamin Bannekers, the George Washington Carvers, and other notables.



Quantitative and qualitative data were collected through the use of a survey and interviews. Quantitative results and qualitative findings were blended to present a nuanced perspective of African Americans learning mathematics during a period of Jim Crow, segregation, and discrimination. Their hopes, their fears, their challenges, their aspirations, their successes, and their failures are all tangential to their overall goal of seeking education, including mathematics education, in the early twentieth century. Both formal and informal experiences revealed a picture of life during those times to further enhance the literature regarding the mathematics experiences of African Americans.

Key words: Black students, historical, senior citizens, mathematics education, oral history, narrative, narrative inquiry, socio-cultural theory, Jim Crow
ContributorsLaCount, Marilyn Ruth (Author) / Zambo, Ronald (Thesis advisor) / Flores, Alfinio (Committee member) / Koblitz, Ann Hibner (Committee member) / Zambo, Debby (Committee member) / Arizona State University (Publisher)
Created2014
150539-Thumbnail Image.png
Description
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.
ContributorsWeber, Eric David (Author) / Thompson, Patrick (Thesis advisor) / Middleton, James (Committee member) / Carlson, Marilyn (Committee member) / Saldanha, Luis (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2012
156439-Thumbnail Image.png
Description
There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document,

There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document, I present the three papers of my dissertation study. The first paper examines two students’ development of concepts foundational to the idea of logarithm. This paper discusses two essential understandings that were revealed to be problematic and essential for students’ development of productive meanings for exponents, logarithms and logarithmic properties. The findings of this study informed my later work to support students in understanding logarithms, their properties and logarithmic functions. The second paper examines two students’ development of the idea of logarithm. This paper describes the reasoning abilities two students exhibited as they engaged with tasks designed to foster their construction of more productive meanings for the idea of logarithm. The findings of this study provide novel insights for supporting students in understanding the idea of logarithm meaningfully. Finally, the third paper begins with an examination of the historical development of the idea of logarithm. I then leveraged the insights of this literature review and the first two papers to perform a conceptual analysis of what is involved in learning and understanding the idea of logarithm. The literature review and conceptual analysis contributes novel and useful information for curriculum developers, instructors, and other researchers studying student learning of this idea.
ContributorsKuper Flores, Emily Ginamarie (Author) / Carlson, Marilyn (Thesis advisor) / Thompson, Patrick (Committee member) / Milner, Fabio (Committee member) / Zazkis, Dov (Committee member) / Czocher, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
155950-Thumbnail Image.png
Description
The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with

The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with the new technology. Therefore, in order to better understand teaching with technology, we need to take a closer look at the adoption of new technology in a mathematics classroom. Using interviews and classroom observations, I explored perturbations in mathematical classroom practices as an instructor implemented virtual manipulatives as novel didactic objects in rational function instruction. In particular, the instructor used didactic objects that were designed to lay the foundation for developing a conceptual understanding of rational functions through the coordination of relative size of the value of the numerator in terms of the value of the denominator. The results are organized according to a taxonomy that captures leader actions, communication, expectations of technology, roles, timing, student engagement, and mathematical conceptions.
ContributorsPampel, Krysten (Author) / Currin van de Sande, Carla (Thesis advisor) / Thompson, Patrick W (Committee member) / Carlson, Marilyn (Committee member) / Milner, Fabio (Committee member) / Strom, April (Committee member) / Arizona State University (Publisher)
Created2017
157204-Thumbnail Image.png
Description
Researchers have described two fundamental conceptualizations for division, known as partitive and quotitive division. Partitive division is the conceptualization of a÷b as the amount of something per copy such that b copies of this amount yield the amount a. Quotitive division is the conceptualization of a÷b as the number of

Researchers have described two fundamental conceptualizations for division, known as partitive and quotitive division. Partitive division is the conceptualization of a÷b as the amount of something per copy such that b copies of this amount yield the amount a. Quotitive division is the conceptualization of a÷b as the number of copies of the amount b that yield the amount a. Researchers have identified many cognitive obstacles that have inhibited the development of robust meanings for division involving non-whole values, while other researchers have commented on the challenges related to such development. Regarding division with fractions, much research has been devoted to quotitive conceptualizations of division, or on symbolic manipulation of variables. Research and curricular activities have largely avoided the study and development of partitive conceptualizations involving fractions, as well as their connection to the invert-and-multiply algorithm. In this dissertation study, I investigated six middle school mathematics teachers’ meanings related to partitive conceptualizations of division over the positive rational numbers. I also investigated the impact of an intervention that I designed with the intent of advancing one of these teachers’ meanings. My findings suggested that the primary cognitive obstacles were difficulties with maintaining multiple levels of units, weak quantitative meanings for fractional multipliers, and an unawareness of (and confusion due to) the two quantitative conceptualizations of division. As a product of this study, I developed a framework for characterizing robust meanings for division, indicated directions for future research, and shared implications for curriculum and instruction.
ContributorsWeber, Matthew Barrett (Author) / Strom, April D (Thesis advisor) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn (Committee member) / Middleton, James (Committee member) / Tzur, Ron (Committee member) / Arizona State University (Publisher)
Created2019
157227-Thumbnail Image.png
Description
The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic

The concept of distribution is one of the core ideas of probability theory and inferential statistics, if not the core idea. Many introductory statistics textbooks pay lip service to stochastic/random processes but how do students think about these processes? This study sought to explore what understandings of stochastic process students develop as they work through materials intended to support them in constructing the long-run behavior meaning for distribution.

I collected data in three phases. First, I conducted a set of task-based clinical interviews that allowed me to build initial models for the students’ meanings for randomness and probability. Second, I worked with Bonnie in an exploratory teaching setting through three sets of activities to see what meanings she would develop for randomness and stochastic process. The final phase consisted of me working with Danielle as she worked through the same activities as Bonnie but this time in teaching experiment setting where I used a series of interventions to test out how Danielle was thinking about stochastic processes.

My analysis shows that students can be aware that the word “random” lives in two worlds, thereby having conflicting meanings. Bonnie’s meaning for randomness evolved over the course of the study from an unproductive meaning centered on the emotions of the characters in the context to a meaning that randomness is the lack of a pattern. Bonnie’s lack of pattern meaning for randomness subsequently underpinned her image of stochastic/processes, leading her to engage in pattern-hunting behavior every time she needed to classify a process as stochastic or not. Danielle’s image of a stochastic process was grounded in whether she saw the repetition as being reproducible (process can be repeated, and outcomes are identical to prior time through the process) or replicable (process can be repeated but the outcomes aren’t in the same order as before). Danielle employed a strategy of carrying out several trials of the process, resetting the applet, and then carrying out the process again, making replicability central to her thinking.
ContributorsHatfield, Neil (Author) / Thompson, Patrick (Thesis advisor) / Carlson, Marilyn (Committee member) / Middleton, James (Committee member) / Lehrer, Richard (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2019
136121-Thumbnail Image.png
Description
The focus of this study was to examine how a student's understanding of function notation impacted their approaches to problem solving. Before this question could be answered, students' understandings about function notation had to be determined. The goal of the first part of the data was to determine the norm

The focus of this study was to examine how a student's understanding of function notation impacted their approaches to problem solving. Before this question could be answered, students' understandings about function notation had to be determined. The goal of the first part of the data was to determine the norm of understanding for function notation for students after taking a college level pre-calculus class. From the data collected, several ideas about student understanding of notation emerged. The goal of the second data set was to determine if student understanding of notation impacted their reasoning while problem solving, and if so, how it impacted their reasoning. Collected data suggests that much of what students "understand" about function notation comes from memorized procedures and that the notation may have little or no meaning for students in context. Evidence from this study indicates that this lack of understanding of function notation does negatively impact student's ability to solve context based problems. In order to build a strong foundation of function, a well-developed understanding of function notation is necessary. Because function notation is a widely accepted way of communicating information about function relationships, understanding its uses and meanings in context is imperative for developing a strong foundation that will allow individuals to approach functions in a meaningful and productive manner.
ContributorsLe, Lesley Kim (Author) / Carlson, Marilyn (Thesis director) / Greenes, Carole (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2015-05