Matching Items (15)
Filtering by

Clear all filters

152540-Thumbnail Image.png
Description
Past research has shown that students have difficulty developing a robust conception of function. However, little prior research has been performed dealing with student knowledge of function composition, a potentially powerful mathematical concept. This dissertation reports the results of an investigation into student understanding and use of function composition, set

Past research has shown that students have difficulty developing a robust conception of function. However, little prior research has been performed dealing with student knowledge of function composition, a potentially powerful mathematical concept. This dissertation reports the results of an investigation into student understanding and use of function composition, set against the backdrop of a precalculus class that emphasized quantification and covariational reasoning. The data were collected using task-based, semi-structured clinical interviews with individual students outside the classroom. Findings from this study revealed that factors such as the student's quantitative reasoning, covariational reasoning, problem solving behaviors, and view of function influence how a student understands and uses function composition. The results of the study characterize some of the subtle ways in which these factors impact students' ability to understand and use function composition to solve problems. Findings also revealed that other factors such as a students' persistence, disposition towards "meaning making" for the purpose of conceptualizing quantitative relationships, familiarity with the context of a problem, procedural fluency, and student knowledge of rules of "order of operations" impact a students' progress in advancing her/his solution approach.
ContributorsBowling, Stacey (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Moore, Kevin C (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2014
155950-Thumbnail Image.png
Description
The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with

The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with the new technology. Therefore, in order to better understand teaching with technology, we need to take a closer look at the adoption of new technology in a mathematics classroom. Using interviews and classroom observations, I explored perturbations in mathematical classroom practices as an instructor implemented virtual manipulatives as novel didactic objects in rational function instruction. In particular, the instructor used didactic objects that were designed to lay the foundation for developing a conceptual understanding of rational functions through the coordination of relative size of the value of the numerator in terms of the value of the denominator. The results are organized according to a taxonomy that captures leader actions, communication, expectations of technology, roles, timing, student engagement, and mathematical conceptions.
ContributorsPampel, Krysten (Author) / Currin van de Sande, Carla (Thesis advisor) / Thompson, Patrick W (Committee member) / Carlson, Marilyn (Committee member) / Milner, Fabio (Committee member) / Strom, April (Committee member) / Arizona State University (Publisher)
Created2017
156865-Thumbnail Image.png
Description
This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and

This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and discuss the implications of these uses for interpreting and leveraging results to produce empirically tested learning trajectories. From my summary and analysis I develop two recommendations for the cognitive researchers developing empirically supported learning trajectories. (1) A researcher should frame his/her work, and analyze others’ work, within the researcher’s image of a broadly coherent trajectory for student learning and (2) that the field should work towards a common understanding for the meaning of a hypothetical learning trajectory.

In Paper 2 I argue that prior research in online learning has tested the impact of online courses on measures such as student retention rates, satisfaction scores, and GPA but that research is needed to describe the meanings students construct for mathematical ideas researchers have identified as critical to their success in future math courses and other STEM fields. This paper discusses the need for a new focus in studying online mathematics learning and calls for cognitive researchers to begin developing a productive methodology for examining the meanings students construct while engaged in online lessons.

Paper 3 describes the online Precalculus course intervention we designed around measurement imagery and quantitative reasoning as themes that unite topics across units. I report results relative to the meanings students developed for exponential functions and related ideas (such as percent change and growth factors) while working through lessons in the intervention. I provide a conceptual analysis guiding its design and discuss pre-test and pre-interview results, post-test and post-interview results, and observations from student behaviors while interacting with lessons. I demonstrate that the targeted meanings can be productive for students, show common unproductive meanings students possess as they enter Precalculus, highlight challenges and opportunities in teaching and learning in the online environment, and discuss needed adaptations to the intervention and future research opportunities informed by my results.
ContributorsO'Bryan, Alan Eugene (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Milner, Fabio (Committee member) / Roh, Kyeong Hah (Committee member) / Tallman, Michael (Committee member) / Arizona State University (Publisher)
Created2018
157204-Thumbnail Image.png
Description
Researchers have described two fundamental conceptualizations for division, known as partitive and quotitive division. Partitive division is the conceptualization of a÷b as the amount of something per copy such that b copies of this amount yield the amount a. Quotitive division is the conceptualization of a÷b as the number of

Researchers have described two fundamental conceptualizations for division, known as partitive and quotitive division. Partitive division is the conceptualization of a÷b as the amount of something per copy such that b copies of this amount yield the amount a. Quotitive division is the conceptualization of a÷b as the number of copies of the amount b that yield the amount a. Researchers have identified many cognitive obstacles that have inhibited the development of robust meanings for division involving non-whole values, while other researchers have commented on the challenges related to such development. Regarding division with fractions, much research has been devoted to quotitive conceptualizations of division, or on symbolic manipulation of variables. Research and curricular activities have largely avoided the study and development of partitive conceptualizations involving fractions, as well as their connection to the invert-and-multiply algorithm. In this dissertation study, I investigated six middle school mathematics teachers’ meanings related to partitive conceptualizations of division over the positive rational numbers. I also investigated the impact of an intervention that I designed with the intent of advancing one of these teachers’ meanings. My findings suggested that the primary cognitive obstacles were difficulties with maintaining multiple levels of units, weak quantitative meanings for fractional multipliers, and an unawareness of (and confusion due to) the two quantitative conceptualizations of division. As a product of this study, I developed a framework for characterizing robust meanings for division, indicated directions for future research, and shared implications for curriculum and instruction.
ContributorsWeber, Matthew Barrett (Author) / Strom, April D (Thesis advisor) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn (Committee member) / Middleton, James (Committee member) / Tzur, Ron (Committee member) / Arizona State University (Publisher)
Created2019
136687-Thumbnail Image.png
Description
Mathematics is an increasingly critical subject and the achievement of students in mathematics has been the focus of many recent reports and studies. However, few studies exist that both observe and discuss the specific teaching and assessment techniques employed in the classrooms across multiple countries. The focus of this study

Mathematics is an increasingly critical subject and the achievement of students in mathematics has been the focus of many recent reports and studies. However, few studies exist that both observe and discuss the specific teaching and assessment techniques employed in the classrooms across multiple countries. The focus of this study is to look at classrooms and educators across six high achieving countries to identify and compare teaching strategies being used. In Finland, Hong Kong, Japan, New Zealand, Singapore, and Switzerland, twenty educators were interviewed and fourteen educators were observed teaching. Themes were first identified by comparing individual teacher responses within each country. These themes were then grouped together across countries and eight emerging patterns were identified. These strategies include students active involvement in the classroom, students given written feedback on assessments, students involvement in thoughtful discussion about mathematical concepts, students solving and explaining mathematics problems at the board, students exploring mathematical concepts either before or after being taught the material, students engagement in practical applications, students making connections between concepts, and students having confidence in their ability to understand mathematics. The strategies identified across these six high achieving countries can inform educators in their efforts of increasing student understanding of mathematical concepts and lead to an improvement in mathematics performance.
ContributorsAnglin, Julia Mae (Author) / Middleton, James (Thesis director) / Vicich, James (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-12
136121-Thumbnail Image.png
Description
The focus of this study was to examine how a student's understanding of function notation impacted their approaches to problem solving. Before this question could be answered, students' understandings about function notation had to be determined. The goal of the first part of the data was to determine the norm

The focus of this study was to examine how a student's understanding of function notation impacted their approaches to problem solving. Before this question could be answered, students' understandings about function notation had to be determined. The goal of the first part of the data was to determine the norm of understanding for function notation for students after taking a college level pre-calculus class. From the data collected, several ideas about student understanding of notation emerged. The goal of the second data set was to determine if student understanding of notation impacted their reasoning while problem solving, and if so, how it impacted their reasoning. Collected data suggests that much of what students "understand" about function notation comes from memorized procedures and that the notation may have little or no meaning for students in context. Evidence from this study indicates that this lack of understanding of function notation does negatively impact student's ability to solve context based problems. In order to build a strong foundation of function, a well-developed understanding of function notation is necessary. Because function notation is a widely accepted way of communicating information about function relationships, understanding its uses and meanings in context is imperative for developing a strong foundation that will allow individuals to approach functions in a meaningful and productive manner.
ContributorsLe, Lesley Kim (Author) / Carlson, Marilyn (Thesis director) / Greenes, Carole (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2015-05
133862-Thumbnail Image.png
Description
Previous research has examined difficulties that students have with understanding and productively working with function notation. Function notation is very prevalent throughout mathematics education, helping students to better understand and more easily work with functions. The goal of my research was to investigate students' current ways of thinking about function

Previous research has examined difficulties that students have with understanding and productively working with function notation. Function notation is very prevalent throughout mathematics education, helping students to better understand and more easily work with functions. The goal of my research was to investigate students' current ways of thinking about function notation to better assist teachers in helping their students develop deeper and more productive understandings. In this study, I conducted two separate interviews with two undergraduate students to explore their meanings for function notation. I developed and adapted tasks aimed at investigating different aspects and uses of function notation. In each interview, I asked the participants to attempt each of the tasks, explaining their thoughts as they worked. While they were working, I occasionally asked clarifying questions to better understand their thought processes. For the second interviews, I added tasks based on difficulties I found in the first interviews. I video recorded each interview for later analysis. Based on the data found in the interviews, I will discuss the seven prevalent ways of thinking that I found, how they hindered or facilitated working with function notation productively, and suggestions for instruction to better help students understand the concept.
ContributorsMckee, Natalie Christina (Author) / Thompson, Patrick (Thesis director) / Zazkis, Dov (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137221-Thumbnail Image.png
Description
This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University

This is a report of a study that investigated the thinking of a high-achieving precalculus student when responding to tasks that required him to define linear formulas to relate covarying quantities. Two interviews were conducted for analysis. A team of us in the mathematics education department at Arizona State University initially identified mental actions that we conjectured were needed for constructing meaningful linear formulas. This guided the development of tasks for the sequence of clinical interviews with one high-performing precalculus student. Analysis of the interview data revealed that in instances when the subject engaged in meaning making that led to him imagining and identifying the relevant quantities and how they change together, he was able to give accurate definitions of variables and was usually able to define a formula to relate the two quantities of interest. However, we found that the student sometimes had difficulty imagining how the two quantities of interest were changing together. At other times he exhibited a weak understanding of the operation of subtraction and the idea of constant rate of change. He did not appear to conceptualize subtraction as a quantitative comparison. His inability to conceptualize a constant rate of change as a proportional relationship between the changes in two quantities also presented an obstacle in his developing a meaningful formula that relied on this understanding. The results further stress the need to develop a student's ability to engage in mental operations that involve covarying quantities and a more robust understanding of constant rate of change since these abilities and understanding are critical for student success in future courses in mathematics.
ContributorsKlinger, Tana Paige (Author) / Carlson, Marilyn (Thesis director) / Thompson, Pat (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
137023-Thumbnail Image.png
Description
Previous research discusses students' difficulties in grasping an operational understanding of covariational reasoning. In this study, I interviewed four undergraduate students in calculus and pre-calculus classes to determine their ways of thinking when working on an animated covariation problem. With previous studies in mind and with the use of technology,

Previous research discusses students' difficulties in grasping an operational understanding of covariational reasoning. In this study, I interviewed four undergraduate students in calculus and pre-calculus classes to determine their ways of thinking when working on an animated covariation problem. With previous studies in mind and with the use of technology, I devised an interview method, which I structured using multiple phases of pre-planned support. With these interviews, I gathered information about two main aspects about students' thinking: how students think when attempting to reason covariationally and which of the identified ways of thinking are most propitious for the development of an understanding of covariational reasoning. I will discuss how, based on interview data, one of the five identified ways of thinking about covariational reasoning is highly propitious, while the other four are somewhat less propitious.
ContributorsWhitmire, Benjamin James (Author) / Thompson, Patrick (Thesis director) / Musgrave, Stacy (Committee member) / Moore, Kevin C. (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor)
Created2014-05
153836-Thumbnail Image.png
Description
Teachers must recognize the knowledge they possess as appropriate to employ in the process of achieving their goals and objectives in the context of practice. Such recognition is subject to a host of cognitive and affective processes that have thus far not been a central focus of research on teacher

Teachers must recognize the knowledge they possess as appropriate to employ in the process of achieving their goals and objectives in the context of practice. Such recognition is subject to a host of cognitive and affective processes that have thus far not been a central focus of research on teacher knowledge in mathematics education. To address this need, this dissertation study examined the role of a secondary mathematics teacher’s image of instructional constraints on his enacted subject matter knowledge. I collected data in three phases. First, I conducted a series of task-based clinical interviews that allowed me to construct a model of David’s mathematical knowledge of sine and cosine functions. Second, I conducted pre-lesson interviews, collected journal entries, and examined David’s instruction to characterize the mathematical knowledge he utilized in the context of designing and implementing lessons. Third, I conducted a series of semi-structured clinical interviews to identify the circumstances David appraised as constraints on his practice and to ascertain the role of these constraints on the quality of David’s enacted subject matter knowledge. My analysis revealed that although David possessed many productive ways of understanding that allowed him to engage students in meaningful learning experiences, I observed discrepancies between and within David’s mathematical knowledge and his enacted mathematical knowledge. These discrepancies were not occasioned by David’s active compensation for the circumstances and events he appraised as instructional constraints, but instead resulted from David possessing multiple schemes for particular ideas related to trigonometric functions, as well as from his unawareness of the mental actions and operations that comprised these often powerful but uncoordinated cognitive schemes. This lack of conscious awareness made David ill-equipped to define his instructional goals in terms of the mental activity in which he intended his students to engage, which further conditioned the circumstances and events he appraised as constraints on his practice. David’s image of instructional constraints therefore did not affect his enacted subject matter knowledge. Rather, characteristics of David’s subject matter knowledge, namely his uncoordinated cognitive schemes and his unawareness of the mental actions and operations that comprise them, affected his image of instructional constraints.
ContributorsTallman, Michael Anthony (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Saldanha, Luis (Committee member) / Middleton, James (Committee member) / Harel, Guershon (Committee member) / Arizona State University (Publisher)
Created2015