Matching Items (9)
Filtering by

Clear all filters

152540-Thumbnail Image.png
Description
Past research has shown that students have difficulty developing a robust conception of function. However, little prior research has been performed dealing with student knowledge of function composition, a potentially powerful mathematical concept. This dissertation reports the results of an investigation into student understanding and use of function composition, set

Past research has shown that students have difficulty developing a robust conception of function. However, little prior research has been performed dealing with student knowledge of function composition, a potentially powerful mathematical concept. This dissertation reports the results of an investigation into student understanding and use of function composition, set against the backdrop of a precalculus class that emphasized quantification and covariational reasoning. The data were collected using task-based, semi-structured clinical interviews with individual students outside the classroom. Findings from this study revealed that factors such as the student's quantitative reasoning, covariational reasoning, problem solving behaviors, and view of function influence how a student understands and uses function composition. The results of the study characterize some of the subtle ways in which these factors impact students' ability to understand and use function composition to solve problems. Findings also revealed that other factors such as a students' persistence, disposition towards "meaning making" for the purpose of conceptualizing quantitative relationships, familiarity with the context of a problem, procedural fluency, and student knowledge of rules of "order of operations" impact a students' progress in advancing her/his solution approach.
ContributorsBowling, Stacey (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Moore, Kevin C (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2014
150539-Thumbnail Image.png
Description
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.
ContributorsWeber, Eric David (Author) / Thompson, Patrick (Thesis advisor) / Middleton, James (Committee member) / Carlson, Marilyn (Committee member) / Saldanha, Luis (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2012
156439-Thumbnail Image.png
Description
There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document,

There have been a number of studies that have examined students’ difficulties in understanding the idea of logarithm and the effectiveness of non-traditional interventions. However, there have been few studies that have examined the understandings students develop and need to develop when completing conceptually oriented logarithmic lessons. In this document, I present the three papers of my dissertation study. The first paper examines two students’ development of concepts foundational to the idea of logarithm. This paper discusses two essential understandings that were revealed to be problematic and essential for students’ development of productive meanings for exponents, logarithms and logarithmic properties. The findings of this study informed my later work to support students in understanding logarithms, their properties and logarithmic functions. The second paper examines two students’ development of the idea of logarithm. This paper describes the reasoning abilities two students exhibited as they engaged with tasks designed to foster their construction of more productive meanings for the idea of logarithm. The findings of this study provide novel insights for supporting students in understanding the idea of logarithm meaningfully. Finally, the third paper begins with an examination of the historical development of the idea of logarithm. I then leveraged the insights of this literature review and the first two papers to perform a conceptual analysis of what is involved in learning and understanding the idea of logarithm. The literature review and conceptual analysis contributes novel and useful information for curriculum developers, instructors, and other researchers studying student learning of this idea.
ContributorsKuper Flores, Emily Ginamarie (Author) / Carlson, Marilyn (Thesis advisor) / Thompson, Patrick (Committee member) / Milner, Fabio (Committee member) / Zazkis, Dov (Committee member) / Czocher, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
155950-Thumbnail Image.png
Description
The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with

The advancement of technology has substantively changed the practices of numerous professions, including teaching. When an instructor first adopts a new technology, established classroom practices are perturbed. These perturbations can have positive and negative, large or small, and long- or short-term effects on instructors’ abilities to teach mathematical concepts with the new technology. Therefore, in order to better understand teaching with technology, we need to take a closer look at the adoption of new technology in a mathematics classroom. Using interviews and classroom observations, I explored perturbations in mathematical classroom practices as an instructor implemented virtual manipulatives as novel didactic objects in rational function instruction. In particular, the instructor used didactic objects that were designed to lay the foundation for developing a conceptual understanding of rational functions through the coordination of relative size of the value of the numerator in terms of the value of the denominator. The results are organized according to a taxonomy that captures leader actions, communication, expectations of technology, roles, timing, student engagement, and mathematical conceptions.
ContributorsPampel, Krysten (Author) / Currin van de Sande, Carla (Thesis advisor) / Thompson, Patrick W (Committee member) / Carlson, Marilyn (Committee member) / Milner, Fabio (Committee member) / Strom, April (Committee member) / Arizona State University (Publisher)
Created2017
156865-Thumbnail Image.png
Description
This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and

This dissertation report follows a three-paper format, with each paper having a different but related focus. In Paper 1 I discuss conceptual analysis of mathematical ideas relative to its place within cognitive learning theories and research studies. In particular, I highlight specific ways mathematics education research uses conceptual analysis and discuss the implications of these uses for interpreting and leveraging results to produce empirically tested learning trajectories. From my summary and analysis I develop two recommendations for the cognitive researchers developing empirically supported learning trajectories. (1) A researcher should frame his/her work, and analyze others’ work, within the researcher’s image of a broadly coherent trajectory for student learning and (2) that the field should work towards a common understanding for the meaning of a hypothetical learning trajectory.

In Paper 2 I argue that prior research in online learning has tested the impact of online courses on measures such as student retention rates, satisfaction scores, and GPA but that research is needed to describe the meanings students construct for mathematical ideas researchers have identified as critical to their success in future math courses and other STEM fields. This paper discusses the need for a new focus in studying online mathematics learning and calls for cognitive researchers to begin developing a productive methodology for examining the meanings students construct while engaged in online lessons.

Paper 3 describes the online Precalculus course intervention we designed around measurement imagery and quantitative reasoning as themes that unite topics across units. I report results relative to the meanings students developed for exponential functions and related ideas (such as percent change and growth factors) while working through lessons in the intervention. I provide a conceptual analysis guiding its design and discuss pre-test and pre-interview results, post-test and post-interview results, and observations from student behaviors while interacting with lessons. I demonstrate that the targeted meanings can be productive for students, show common unproductive meanings students possess as they enter Precalculus, highlight challenges and opportunities in teaching and learning in the online environment, and discuss needed adaptations to the intervention and future research opportunities informed by my results.
ContributorsO'Bryan, Alan Eugene (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Milner, Fabio (Committee member) / Roh, Kyeong Hah (Committee member) / Tallman, Michael (Committee member) / Arizona State University (Publisher)
Created2018
155768-Thumbnail Image.png
Description
Researchers have documented the importance of seeing a graph as an emergent trace of how two quantities’ values vary simultaneously in order to reason about the graph in terms of quantitative relationships. If a student does not see a graph as a representation of how quantities change together then the

Researchers have documented the importance of seeing a graph as an emergent trace of how two quantities’ values vary simultaneously in order to reason about the graph in terms of quantitative relationships. If a student does not see a graph as a representation of how quantities change together then the student is limited to reasoning about perceptual features of the shape of the graph.

This dissertation reports results of an investigation into the ways of thinking that support and inhibit students from constructing and reasoning about graphs in terms of covarying quantities. I collected data by engaging three university precalculus students in asynchronous teaching experiments. I designed the instructional sequence to support students in making three constructions: first imagine representing quantities’ magnitudes along the axes, then simultaneously represent these magnitudes with a correspondence point in the plane, and finally anticipate tracking the correspondence point to track how the two quantities’ attributes change simultaneously.

Findings from this investigation provide insights into how students come to engage in covariational reasoning and re-present their imagery in their graphing actions. The data presented here suggests that it is nontrivial for students to coordinate their images of two varying quantities. This is significant because without a way to coordinate two quantities’ variation the student is limited to engaging in static shape thinking.

I describe three types of imagery: a correspondence point, Tinker Bell and her pixie dust, and an actor taking baby steps, that supported students in developing ways to coordinate quantities’ variation. I discuss the figurative aspects of the students’ coordination in order to account for the difficulties students had (1) constructing a multiplicative object that persisted under variation, (2) reconstructing their acts of covariation in other graphing tasks, and (3) generalizing these acts of covariation to reason about formulas in terms of covarying quantities.
ContributorsFrank, Kristin Marianna (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn P (Thesis advisor) / Milner, Fabio (Committee member) / Roh, Kyeong Hah (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2017
157668-Thumbnail Image.png
Description
This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct

This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct of frame of reference. The first paper is a theory paper that introduces the mental actions involved in reasoning with frames of reference. The concept of frames of reference, though commonly used in mathematics and physics, is not described cognitively in any literature. The paper offers a theoretical model of mental actions involved in conceptualizing a frame of reference. Additionally, it posits mental actions that are necessary for a student to reason with multiple frames of reference. It also extends the theory of quantitative reasoning with the construct of a ‘framed quantity’. The second paper investigates how two introductory calculus students who participated in teaching experiments reasoned about changes (variations). The data was analyzed to see to what extent each student conceptualized the variations within a conceptualized frame of reference as described in the first paper. The study found that the extent to which each student conceptualized, coordinated, and combined reference frames significantly affected his ability to reason productively about variations and to make sense of his own answers. The paper ends by analyzing 123 calculus students’ written responses to one of the tasks to build hypotheses about how calculus students reason about variations within frames of reference. The third paper reports how U.S. and Korean secondary mathematics teachers reason with frame of reference on open-response items. An assessment with five frame of reference tasks was given to 539 teachers in the US and Korea, and the responses were coded with rubrics intended to categorize responses by the extent to which they demonstrated conceptualized and coordinated frames of reference. The results show that the theory in the first study is useful in analyzing teachers’ reasoning with frames of reference, and that the items and rubrics function as useful tools in investigating teachers’ meanings for quantities within a frame of reference.
ContributorsJoshua, Surani Ashanthi (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn (Committee member) / Roh, Kyeong Hah (Committee member) / Middleton, James (Committee member) / Culbertson, Robert (Committee member) / Arizona State University (Publisher)
Created2019
161800-Thumbnail Image.png
Description
This dissertation is on the topic of sameness of representation of mathematical entities from a mathematics education perspective. In mathematics, people frequently work with different representations of the same thing. This is especially evident when considering the prevalence of the equals sign (=). I am adopting the three-paper dissertation model.

This dissertation is on the topic of sameness of representation of mathematical entities from a mathematics education perspective. In mathematics, people frequently work with different representations of the same thing. This is especially evident when considering the prevalence of the equals sign (=). I am adopting the three-paper dissertation model. Each paper reports on a study that investigates understandings of the identity relation. The first study directly addresses function identity: how students conceptualize, work with, and assess sameness of representation of function. It uses both qualitative and quantitative methods to examine how students understand function sameness in calculus contexts. The second study is on the topic of implicit differentiation and student understanding of the legitimacy of it as a procedure. This relates to sameness insofar as differentiating an equation is a valid inference when the equation expresses function identity. The third study directly addresses usage of the equals sign (“=”). In particular, I focus on the notion of symmetry; equality is a symmetric relation (truth-functionally), and mathematicians understand it as such. However, results of my study show that usage is not symmetric. This is small qualitative study and incorporates ideas from the field of linguistics.
ContributorsMirin, Alison (Author) / Zazkis, Dov (Thesis advisor) / Dawkins, Paul C. (Committee member) / Thompson, Patrick W. (Committee member) / Milner, Fabio (Committee member) / Kawski, Matthias (Committee member) / Arizona State University (Publisher)
Created2021
171985-Thumbnail Image.png
Description
This three-article dissertation considers the pedagogical practices for developing statistically literate students and teaching data-driven decision-making with the goal of preparing students for civic engagement and improving student achievement. The first article discusses a critical review of the literature on data-driven decision-making project conditions in K-12 educational settings. Upon reviewing

This three-article dissertation considers the pedagogical practices for developing statistically literate students and teaching data-driven decision-making with the goal of preparing students for civic engagement and improving student achievement. The first article discusses a critical review of the literature on data-driven decision-making project conditions in K-12 educational settings. Upon reviewing the literature, I synthesized and summarized the current practices into three distinct models. The models serve to clarify the pedagogical choices of the teacher and the degree at which students' views are involved and incorporated into the projects. I propose an alternative model/framework and discuss possible implications in the classroom. In the second article, I use the framework developed in the first article as the basis for an educational research intervention. I describe a study where I developed a handbook based on the framework and implemented a sample of professional development sessions from the handbook. Advisors and teachers provided feedback on the handbook and professional development. This feedback served as the subject of analysis while I continued to refine the handbook and the professional learning sessions. I describe the refinement process and the implications in terms of design decisions of educational interventions and statistical knowledge for teaching. The final article performs a secondary data analysis of school, teacher, and student level data using the Trends in International Mathematics and Science Study (TIMSS) database. The paper seeks to answer the research question: “Which aspects of teacher professional knowledge measures predict student achievement in the mathematical domain of data and statistical topics?” The results indicate that when controlling for school level wealth index, teacher characteristics are not as influential as the school level wealth index. I discuss future research as well as school policy and curriculum implications of these results.
ContributorsRiske, Amanda Katherine (Author) / Zuiker, Steven (Thesis advisor) / Milner, Fabio (Thesis advisor) / Middleton, James (Committee member) / Pivovarova, Margarita (Committee member) / Arizona State University (Publisher)
Created2022