Matching Items (406)
Filtering by

Clear all filters

Description
To date, it has been difficult to elucidate the role of tau in learning and memory during adulthood due to developmental compensation of other microtubule associated proteins in Tau knockout (KO) mice. Here, we generated an adeno-associated virus (AAV) expressing a doxycycline (doxy)-inducible short-hairpin (sh) RNA targeted to tau, and

To date, it has been difficult to elucidate the role of tau in learning and memory during adulthood due to developmental compensation of other microtubule associated proteins in Tau knockout (KO) mice. Here, we generated an adeno-associated virus (AAV) expressing a doxycycline (doxy)-inducible short-hairpin (sh) RNA targeted to tau, and stereotaxically and bilaterally injected 7-month-old C57BL/6 mice with either the AAV-shRNAtau or an AAV expressing a scramble shRNA sequence. Seven days after the injections, all animals were administered doxy for thirty-five days to induce expression of shRNAs, after which they were tested in the open field, rotarod and Morris water maze (MWM) to assess anxiety like behavior, motor coordination and spatial reference memory, respectively. Our results show that reducing tau in the adult hippocampus produces significant impairments in motor coordination, endurance and spatial memory. Tissue analyses shows that tau knockdown reduces hippocampal dendritic spine density and the levels of BDNF and synaptophysin, two proteins involved in memory formation and plasticity. Our approach circumvents the developmental compensation issues observed in Tau KO models and shows that reducing tau levels during adulthood impairs cognition.
ContributorsTran, An Le (Author) / Oddo, Salvatore (Thesis director) / Velazquez, Ramon (Committee member) / Roberson, Erik (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134699-Thumbnail Image.png
Description
Nicotine use is an outstanding public health problem with associated social and economic consequences. Nicotine is an active alkaloid compound in tobacco and is recognized as a psychoactive drug. Preclinically, nicotine addiction and relapse can be modeled using a self-administration-reinstatement paradigm. Here, we used a nicotine self-administration and contingent cue-induced

Nicotine use is an outstanding public health problem with associated social and economic consequences. Nicotine is an active alkaloid compound in tobacco and is recognized as a psychoactive drug. Preclinically, nicotine addiction and relapse can be modeled using a self-administration-reinstatement paradigm. Here, we used a nicotine self-administration and contingent cue-induced reinstatement model to examine rapid, transient synaptic plasticity (t-SP) induced by nicotine cue-triggered motivation. Although preliminary, treatment with the NMDA GluN2B subunit antagonist, ifenprodil, reduced reinstated nicotine seeking, and increased the percentage of spines with smaller head diameters. Thus, future studies are needed to fully parse out the role of NAcore GluN2B receptors in cued nicotine seeking and t-SP.
ContributorsMccallum, Joseph John (Author) / Gipson-Reichardt, Cassandra (Thesis director) / Neisewander, Janet (Committee member) / Olive, Michael Foster (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
ContributorsEvans, Bartlett R. (Conductor) / Schildkret, David (Conductor) / Glenn, Erica (Conductor) / Concert Choir (Performer) / Chamber Singers (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-16
155573-Thumbnail Image.png
Description
Angelman syndrome (AS) is a neurodevelopmental disorder characterized by developmental delays, intellectual disabilities, impaired language and speech, and movement defects. Most AS cases are caused by dysfunction of a maternally-expressed E3 ubiquitin ligase (UBE3A, also known as E6 associated protein, E6-AP) in neurons. Currently, the mechanism on how loss-of-function of

Angelman syndrome (AS) is a neurodevelopmental disorder characterized by developmental delays, intellectual disabilities, impaired language and speech, and movement defects. Most AS cases are caused by dysfunction of a maternally-expressed E3 ubiquitin ligase (UBE3A, also known as E6 associated protein, E6-AP) in neurons. Currently, the mechanism on how loss-of-function of the enzyme influences the nervous system development remains unknown. We hypothesize that impaired metabolism of proteins, most likely those related to E6-AP substrates, may alter the developmental trajectory of neuronal structures including dendrites, spines and synaptic proteins, which leads to disrupted activity/experience-dependent synaptic plasticity and maturation. To test this hypothesis, we conducted a detailed investigation on neuronal morphology and electrophysiological properties in the prefrontal cortex (PFC) layer 5 (L5) corticostriatal pyramidal neurons (target neurons). We found smaller soma size in the maternal Ube3a deficient mice (m-/p+; 'AS' mice) at postnatal 17-19 (P17-19), P28-35 and older than 70 days (>P70), and decreased basal dendritic processes at P28-35. Surprisingly, both excitatory and inhibitory miniature postsynaptic currents (mEPSCs and mIPSCs) decreased on these neurons. These neurons also exhibited abnormalities in the local neural circuits, short-term synaptic plasticity and AMPA/NMDA ratio: the excitatory inputs from L2/3 and L5A, and inhibitory inputs from L5 significantly reduced in AS mice from P17-19; Both the release probability (Pr) and readily-releasable vesicle (RRV) pool replenishment of presynaptic neurons of the target neurons were disrupted at P17-19 and P28-35, and the change of RRV pool replenishment maintained through adulthood (>P70). The AMPA/NMDA ratio showed abnormality in the L5 corticostriatal neurons of PFC in AS mice older than P28-35, during which it decreased significantly compared to that of age-matched WT littermates. Western Blot analysis revealed that the expression level of a key regulator of the cytoskeleton system, Rho family small GTPase cell division control protein 42 homolog (cdc42), reduced significantly in the PFC of AS mice at P28-35.These impairments of synaptic transmission and short-term synaptic plasticity may account for the impaired neuronal morphology and synaptic deficits observed in the PFC target neurons, and contribute to the phenotypes in AS model mice. The present work reveals for the first time that the E6-AP deficiency influences brain function in both brain region-specific and age-dependent ways, demonstrates the functional impairment at the neural circuit level, and reveals that the presynaptic mechanisms are disrupted in AS model. These novel findings shed light on our understanding of the AS pathogenesis and inform potential novel therapeutic explorations.
ContributorsLi, Guohui (Author) / Qiu, Shenfeng (Thesis advisor) / Newbern, Jason (Committee member) / Wu, Jie (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2017
151450-Thumbnail Image.png
Description
Sensory gating is a process by which the nervous system preferentially admits stimuli that are important for the organism while filtering out those that may be meaningless. An optimal sensory gate cannot be static or inflexible, but rather plastic and informed by past experiences. Learning enables sensory gates to recognize

Sensory gating is a process by which the nervous system preferentially admits stimuli that are important for the organism while filtering out those that may be meaningless. An optimal sensory gate cannot be static or inflexible, but rather plastic and informed by past experiences. Learning enables sensory gates to recognize stimuli that are emotionally salient and potentially predictive of positive or negative outcomes essential to survival. Olfaction is the only sensory modality in mammals where sensory inputs bypass conventional thalamic gating before entering higher emotional or cognitive brain regions. Thus, olfactory bulb circuits may have a heavier burden of sensory gating compared to other primary sensory circuits. How do the primary synapses in an olfactory system "learn"' in order to optimally gate or filter sensory stimuli? I hypothesize that centrifugal neuromodulator serotonin serves as a signaling mechanism by which primary olfactory circuits can experience learning informed sensory gating. To test my hypothesis, I conditioned genetically-modified mice using reward or fear olfactory-cued learning paradigms and used pharmacological, electrophysiological, immunohistochemical, and optical imaging approaches to assay changes in serotonin signaling or functional changes in primary olfactory circuits. My results indicate serotonin is a key mediator in the acquisition of olfactory fear memories through the activation of its type 2A receptors in the olfactory bulb. Functionally within the first synaptic relay of olfactory glomeruli, serotonin type 2A receptor activation decreases excitatory glutamatergic drive of olfactory sensory neurons through both presynaptic and postsynaptic mechanisms. I propose that serotonergic signaling decreases excitatory drive, thereby disconnecting olfactory sensory neurons from odor responses once information is learned and its behavioral significance is consolidated. I found that learning induced chronic changes in the density of serotonin fibers and receptors, which persisted in glomeruli encoding the conditioning odor. Such persistent changes could represent a sensory gate stabilized by memory. I hypothesize this ensures that the glomerulus encoding meaningful odors are much more sensitive to future serotonin signaling as such arousal cues arrive from centrifugal pathways originating in the dorsal raphe nucleus. The results advocate that a simple associative memory trace can be formed at primary sensory synapses to facilitate optimal sensory gating in mammalian olfaction.
ContributorsLi, Monica (Author) / Tyler, William J (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Duch, Carsten (Committee member) / Neisewander, Janet (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsOwen, Ken (Conductor) / McDevitt, Mandy L. M. (Performer) / Larson, Brook (Conductor) / Wang, Lin-Yu (Performer) / Jacobs, Todd (Performer) / Morehouse, Daniel (Performer) / Magers, Kristen (Performer) / DeGrow, Gary (Performer) / DeGrow, Richard (Performer) / Women's Chorus (Performer) / Sun Devil Singers (Performer) / ASU Library. Music Library (Publisher)
Created2004-03-24
ContributorsMetz, John (Performer) / Sowers, Richard (Performer) / Collegium Musicum (Performer) / ASU Library. Music Library (Publisher)
Created1983-01-29
ContributorsEvans, Bartlett R. (Conductor) / Glenn, Erica (Conductor) / Steiner, Kieran (Conductor) / Thompson, Jason D. (Conductor) / Arizona Statesmen (Performer) / Women's Chorus (Performer) / Concert Choir (Performer) / Gospel Choir (Conductor) / ASU Library. Music Library (Publisher)
Created2019-03-15
ContributorsKillian, George W. (Performer) / Killian, Joni (Performer) / Vocal Jazz Ensemble (Performer) / ASU Library. Music Library (Publisher)
Created1992-11-05
ContributorsButler, Robb (Conductor) / McCreary, Kimilee (Conductor) / Bakko, Nicki L. (Conductor) / Schreuder, Joel (Conductor) / Larson, Matthew (Performer) / Ortman, Mory (Performer) / Graduate Chorale I (Performer) / Graduate Chorale II (Performer) / ASU Library. Music Library (Publisher)
Created1999-12-02