Matching Items (2)

Filtering by

Clear all filters

135463-Thumbnail Image.png

Phenotypic Plasticity and Early Life Cycle Development of the Chytrid Fungus Batrachochytrium dendrobatidis

Description

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has captured human attention because it is a pathogen that has contributed to global amphibian declines. Despite increased research, much is still unknown

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has captured human attention because it is a pathogen that has contributed to global amphibian declines. Despite increased research, much is still unknown about how it develops. For example, the fact that Bd exhibits phenotypic plasticity during development was only recently identified. In this thesis, the causes of phenotypic plasticity in Bd are tested by exposing the fungus to different substrates, including powdered frog skin and keratin, which seems to play an important role in the fungus's colonization of amphibian epidermis. A novel swelling structure emerging from Bd germlings developed when exposed to keratin and frog skin. This swelling has not been observed in Bd grown in laboratory cultures before, and it is possible that it is analogous to the germ tube Bd develops in vivo. Growth of the swelling suggests that keratin plays a role in the phenotypic plasticity expressed by Bd.

Contributors

Agent

Created

Date Created
  • 2016-05

134991-Thumbnail Image.png

Analysis of Global Variance of the Thermal Maxima of an Amphibian Pathogen

Description

Batrachochytrium dendrobatidis (Bd), the amphibian chytrid fungus causing chytridiomycosis, is the cause of massive amphibian die-offs. As with any host-pathogen relationship, it is paramount to understand the growth and reproduction

Batrachochytrium dendrobatidis (Bd), the amphibian chytrid fungus causing chytridiomycosis, is the cause of massive amphibian die-offs. As with any host-pathogen relationship, it is paramount to understand the growth and reproduction of the pathogen that causes an infectious disease outbreak. The life-cycle of the pathogen, Bd, is strongly influenced by temperature; however, previous research has focused on Bd isolated from limited geographic ranges, and may not be representative of Bd on a global scale. My research examines the relationship between Bd and temperature on the global level to determine the actual thermal maximum of Bd. Six isolates of Bd, from three continents, were incubated at a temperature within the thermal range (21°C) and a temperature higher than the optimal thermal range (27°C). Temperature affected the growth and zoosporangium size of all six isolates of Bd. All six isolates had proliferative growth at 21°C, but at 27°C the amount and quality of growth varied per isolate. My results demonstrate that each Bd isolate has a different response to temperature, and the thermal maximum for growth varies with each isolate. Further understanding of the difference in isolate response to temperature can lead to a better understanding of Bd pathogen dynamics, as well as allow us the ability to identify susceptible hosts and environments before an outbreak.

Contributors

Agent

Created

Date Created
  • 2016-12