Matching Items (1,381)
Filtering by

Clear all filters

155344-Thumbnail Image.png
Description
Phantom Sun is a ten-minute piece in three sections, and is composed for flute, clarinet in b-flat, violin, cello, and percussion. The three-part structure for this work is a representation of the atmospheric phenomenon after which the composition is named. A phantom sun, also called a parhelion or sundog, is

Phantom Sun is a ten-minute piece in three sections, and is composed for flute, clarinet in b-flat, violin, cello, and percussion. The three-part structure for this work is a representation of the atmospheric phenomenon after which the composition is named. A phantom sun, also called a parhelion or sundog, is a weather-related phenomenon caused by the horizontal refraction of sunlight in the upper atmosphere. This refraction creates the illusion of three suns above the horizon, and is often accompanied by a bright halo called the circumzenithal arc. The halo is caused by light bending at 22° as it passes through hexagonal ice crystals. Consequently, the numbers six and 22 are important figures, and have been encoded into this piece in various ways.

The first section, marked “With concentrated intensity,” is characterized by the juxtaposition of tonal ambiguity and tonal affirmation, as well as the use of polymetric counterpoint (often 7/8 against 4/4 or 7/8 against 3/4). The middle section, marked “Crystalline,” provides contrast in its use of unmetered sections and independent tempos. The refraction of light is represented in this movement by a 22-note row based on a hexachord (B-flat, F, C, G, A, E) introduced in measure 164 of the first section. The third section, marked “With frenetic energy,” begins without pause on an arresting entrance of the drums playing an additive rhythmic pattern. This pattern (5+7+9+1) amounts to 22 eighth-note pulses and informs much of the motivic and structural considerations for the remainder of the piece.
ContributorsMitton, Stephen LeRoy (Author) / DeMars, James (Thesis advisor) / Norton, Kay (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2017
ContributorsHsu, Gabrielle (Performer) / Kierum, Caitlin (Performer) / Song, Yiqian (Performer) / Fox, Matt (Performer) / Lougheed, Julia (Performer) / Jones, Evelyn (Performer) / Miller, Isaac (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-14
ContributorsMoonitz, Olivia (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-13
ContributorsAnderle, Jeff (Performer) / Wegehaupt, David (Performer) / Bennett, Joshua (Performer) / Clements, Katrina (Performer) / Dominguez, Vincent (Performer) / Druesedow, Libby (Performer) / Englert, Patrick (Performer) / Liang, Jack (Performer) / Moonitz, Olivia (Performer) / Ruth, Jeremy (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-09
ContributorsNeidermayer, Tyler (Performer) / Karam, Andrea Luque (Performer) / White, Jonathan (Performer) / Manka, Andrew (Performer) / Chaston, Aubrey (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
135463-Thumbnail Image.png
Description
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has captured human attention because it is a pathogen that has contributed to global amphibian declines. Despite increased research, much is still unknown about how it develops. For example, the fact that Bd exhibits phenotypic plasticity during development was only recently identified. In

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has captured human attention because it is a pathogen that has contributed to global amphibian declines. Despite increased research, much is still unknown about how it develops. For example, the fact that Bd exhibits phenotypic plasticity during development was only recently identified. In this thesis, the causes of phenotypic plasticity in Bd are tested by exposing the fungus to different substrates, including powdered frog skin and keratin, which seems to play an important role in the fungus's colonization of amphibian epidermis. A novel swelling structure emerging from Bd germlings developed when exposed to keratin and frog skin. This swelling has not been observed in Bd grown in laboratory cultures before, and it is possible that it is analogous to the germ tube Bd develops in vivo. Growth of the swelling suggests that keratin plays a role in the phenotypic plasticity expressed by Bd.
ContributorsBabb-Biernacki, Spenser Jordan (Author) / Collins, James P. (Thesis director) / Roberson, Robert (Committee member) / Brus, Evan (Committee member) / School of Film, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
ContributorsASU Library. Music Library (Publisher)
Created2018-09-17
ContributorsSpring, Robert (Performer) / Gardner, Joshua (Performer) / Buck, Elizabeth (Performer) / Schuring, Martin (Performer) / Micklich, Albie (Performer) / Ericson, John Q. (John Quincy), 1962- (Performer) / Smith, J. B., 1957- (Performer) / Ryan, Russell (Contributor) / ASU Library. Music Library (Publisher)
Created2018-09-16
ContributorsZhu, Shuang (Performer) / Spring, Robert (Performer) / Zhang, Aihua (Performer) / Skinner, Wesley (Performer) / Jiang, Zhou (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-09
ContributorsSadownik, Stephanie (Performer) / Di Russo, Michelle (Conductor) / ASU Library. Music Library (Publisher)
Created2018-04-08