Matching Items (4)
Filtering by

Clear all filters

152647-Thumbnail Image.png
Description
We live in a world of rapidly changing technologies that bathe us in visual images and information, not only challenging us to find connections and make sense of what we are learning, but also allowing us to learn and to collaborate in new ways. Art educators are using one of

We live in a world of rapidly changing technologies that bathe us in visual images and information, not only challenging us to find connections and make sense of what we are learning, but also allowing us to learn and to collaborate in new ways. Art educators are using one of these new technologies, virtual worlds, to create educational environments and curricula. This study looks at how post-secondary art educators are using Second Life in their undergraduate and graduate level curricula and what perceived benefits, challenges, and unique learning experiences they feel this new educational venue offers. This study uses qualitative and participant observation methodologies, including qualitative interviews, observations, and collection of generated works, to look at the practices of six art educators teaching university level undergraduate and graduate courses. Data are compared internally between the participants and externally by correlating to current research. Art education in Second Life includes many curricula activities and strategies often seen in face-to-face classes, including writing reflections, essays, and papers, creating presentations and Power Points, conducting research, and creating art. Challenges include expense, student frustration and anxiety issues, and the transience of Second Life sites. Among the unique learning experiences are increased opportunities for field trips, student collaboration, access to guest speakers, and the ability to set up experiences not practical or possible in the real world. The experiences of these six art educators can be used as a guide for art educators just beginning exploration of virtual world education and encouragement when looking for new ways to teach that may increase our students' understanding and knowledge and their access and connections to others.
ContributorsSchlegel, Deborah (Author) / Stokrocki, Mary (Thesis advisor) / Erickson, Mary (Committee member) / Young, Bernard (Committee member) / Arizona State University (Publisher)
Created2014
149781-Thumbnail Image.png
Description
Adolescents' clay sculpture has been researched significantly less than their drawings. I spent approximately six weeks in a ceramics class located at a high school in a suburb of Phoenix, Arizona in order to explore how gender affected subject matter preference in students' three dimensional clay sculpture. Gender studies on

Adolescents' clay sculpture has been researched significantly less than their drawings. I spent approximately six weeks in a ceramics class located at a high school in a suburb of Phoenix, Arizona in order to explore how gender affected subject matter preference in students' three dimensional clay sculpture. Gender studies on children's drawings reveal that males favor fantasy, violence, aggression, sports, and power, while females favor realism, domestic and social experience, physical appearance, care and concern, nature and animals. My three main research questions in this study were 1) How did gender affect subject matter in adolescents' three-dimensional clay sculpture? 2) What similarities or differences existed between females' and males' subject matter preference in sculpture and their subject matter preference in drawing? 3) Assuming that significant gender differences existed, how successful would the students be with a project that favored opposite gender themed subject matter? I found that although males and females had gender differences between subject matter in their clay sculptures, there were exceptions. In addition, the nature of clay affected this study in many ways. Teachers and students need to be well prepared for issues that arise during construction of clay sculptures so that students are able to use clay to fully express their ideas.
ContributorsMarsili, Teresa (Author) / Stokrocki, Mary (Thesis advisor) / Young, Bernard (Committee member) / Erickson, Mary (Committee member) / Arizona State University (Publisher)
Created2011
Description
‘why we bend' a Bachelor of Fine Arts honors thesis exhibition by Ximenna Hofsetz and Tiernan Warner brings together installation, digital, sculptural, and printed artwork. The main focus concerns memory; and its vague, formless, and hazy nature. The work also examines what would happen if cognitive space could

‘why we bend' a Bachelor of Fine Arts honors thesis exhibition by Ximenna Hofsetz and Tiernan Warner brings together installation, digital, sculptural, and printed artwork. The main focus concerns memory; and its vague, formless, and hazy nature. The work also examines what would happen if cognitive space could be physically mapped? What would it look like in sculptural form? Memory erodes and distorts with time. We influence our memories as much as they affect us. Thus, just as relationships are ever-changing, and our memories of those we interact with constantly shifting, our relationships with our own memories are malleable and evolve through time. This transient nature of memory is depicted in the various stylistic means of this exhibition by referencing time and space as well as personal memories and ephemera in both concrete and abstract ways. ‘why we bend’ implements a variety of multimedia techniques to examine recollection and its hold on us.
ContributorsHofsetz, Ximenna Cedella (Author) / Gutierrez, Rogelio (Thesis director) / Hood, Mary (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Art (Contributor)
Created2014-12
155180-Thumbnail Image.png
Description
The present study explored the use of augmented reality (AR) technology to support cognitive modeling in an art-based learning environment. The AR application used in this study made visible the thought processes and observational techniques of art experts for the learning benefit of novices through digital annotations, overlays, and side-by-side

The present study explored the use of augmented reality (AR) technology to support cognitive modeling in an art-based learning environment. The AR application used in this study made visible the thought processes and observational techniques of art experts for the learning benefit of novices through digital annotations, overlays, and side-by-side comparisons that when viewed on mobile device appear directly on works of art.

Using a 2 x 3 factorial design, this study compared learner outcomes and motivation across technologies (audio-only, video, AR) and groupings (individuals, dyads) with 182 undergraduate and graduate students who were self-identified art novices. Learner outcomes were measured by post-activity spoken responses to a painting reproduction with the pre-activity response as a moderating variable. Motivation was measured by the sum score of a reduced version of the Instructional Materials Motivational Survey (IMMS), accounting for attention, relevance, confidence, and satisfaction, with total time spent in learning activity as the moderating variable. Information on participant demographics, technology usage, and art experience was also collected.

Participants were randomly assigned to one of six conditions that differed by technology and grouping before completing a learning activity where they viewed four high-resolution, printed-to-scale painting reproductions in a gallery-like setting while listening to audio-recorded conversations of two experts discussing the actual paintings. All participants listened to expert conversations but the video and AR conditions received visual supports via mobile device.

Though no main effects were found for technology or groupings, findings did include statistically significant higher learner outcomes in the elements of design subscale (characteristics most represented by the visual supports of the AR application) than the audio-only conditions. When participants saw digital representations of line, shape, and color directly on the paintings, they were more likely to identify those same features in the post-activity painting. Seeing what the experts see, in a situated environment, resulted in evidence that participants began to view paintings in a manner similar to the experts. This is evidence of the value of the temporal and spatial contiguity afforded by AR in cognitive modeling learning environments.
ContributorsShapera, Daniel Michael (Author) / Atkinson, Robert K (Thesis advisor) / Nelson, Brian C (Committee member) / Erickson, Mary (Committee member) / Arizona State University (Publisher)
Created2016