Matching Items (386)
151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsMatthews, Eyona (Performer) / Yoo, Katie Jihye (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
ContributorsHoeckley, Stephanie (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-24
150473-Thumbnail Image.png
Description
ABSTRACT The heat recovery steam generator (HRSG) is a key component of Combined Cycle Power Plants (CCPP). The exhaust (flue gas) from the CCPP gas turbine flows through the HRSG − this gas typically contains a high concentration of NO and cannot be discharged directly to the atmosphere because of

ABSTRACT The heat recovery steam generator (HRSG) is a key component of Combined Cycle Power Plants (CCPP). The exhaust (flue gas) from the CCPP gas turbine flows through the HRSG − this gas typically contains a high concentration of NO and cannot be discharged directly to the atmosphere because of environmental restrictions. In the HRSG, one method of reducing the flue gas NO concentration is to inject ammonia into the gas at a plane upstream of the Selective Catalytic Reduction (SCR) unit through an injection grid (AIG); the SCR is where the NO is reduced to N2 and H2O. The amount and spatial distribution of the injected ammonia are key considerations for NO reduction while using the minimum possible amount of ammonia. This work had three objectives. First, a flow network model of the Ammonia Flow Control Unit (AFCU) was to be developed to calculate the quantity of ammonia released into the flue gas from each AIG perforation. Second, CFD simulation of the flue gas flow was to be performed to obtain the velocity, temperature, and species concentration fields in the gas upstream and downstream of the SCR. Finally, performance characteristics of the ammonia injection system were to be evaluated. All three objectives were reached. The AFCU was modeled using JAVA - with a graphical user interface provided for the user. The commercial software Fluent was used for CFD simulation. To evaluate the efficacy of the ammonia injection system in reducing the flue gas NO concentration, the twelve butterfly valves in the AFCU ammonia delivery piping (risers) were throttled by various degrees in the model and the NO concentration distribution computed for each operational scenario. When the valves were kept fully open, it was found that it led to a more uniform reduction in NO concentration compared to throttling the valves such that the riser flows were equal. Additionally, the SCR catalyst was consumed somewhat more uniformly, and ammonia slip (ammonia not consumed in reaction) was found lower. The ammonia use could be decreased by 10 percent while maintaining the NO concentration limit in the flue gas exhausting into the atmosphere.
ContributorsAdulkar, Sajesh (Author) / Roy, Ramendra (Thesis advisor) / Lee, Taewoo (Thesis advisor) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2011
151249-Thumbnail Image.png
Description
As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an

As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.
ContributorsCavendish, Rio (Author) / Crozier, Peter (Thesis advisor) / Adams, James (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsMcClain, Katelyn (Performer) / Buringrud, Deanna (Contributor) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
156103-Thumbnail Image.png
Description
Carboxylic acids are an abundant and reactive species present throughout our solar system. The reactions of carboxylic acids can shape the organic abundances within oil field brines, carbonaceous chondrites, and different ranks of coal.

I have performed hydrothermal experiments with model aromatic carboxylic acids in the presences of different oxide

Carboxylic acids are an abundant and reactive species present throughout our solar system. The reactions of carboxylic acids can shape the organic abundances within oil field brines, carbonaceous chondrites, and different ranks of coal.

I have performed hydrothermal experiments with model aromatic carboxylic acids in the presences of different oxide minerals to investigate the reactions available to carboxylic acids in the presence of mineral surfaces. By performing experiments containing one organic compound and one mineral surface, I can begin to unravel the different reactions that can occur in the presence of different minerals.

I performed experiments with phenylacetic acid (PAA), hydrocinnamic acid (HCA) and benzoic acid (BA) in the presence of spinel (MgAl2O4), magnetite (Fe3O4), hematite (Fe2O3), and corundum (Al2O3). The focus of this work was metal oxide minerals, with and without transition metal atoms, and with different crystal structures. I found that all four oxide minerals facilitated ketonic decarboxylation reactions of carboxylic acids to form ketone structures. The two minerals containing transition metals (magnetite and hematite) also opened a reaction path involving electrochemical oxidation of one carboxylic acid, PAA, to the shorter chain version of a second carboxylic acid, BA, in experiments starting with PAA. Fundamental studies like these can help to shape our knowledge of the breadth of organic reactions that are possible in geologic systems and the mechanisms of those reactions.
ContributorsJohnson, Kristin Nicole (Author) / Shock, Everett (Thesis advisor) / Hartnett, Hilairy (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2017
ContributorsHur, Jiyoun (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
136591-Thumbnail Image.png
Description
Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary

Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary water treatment or as a medical disinfectant, among many other uses. Various carbon-based catalysts and binders for use at the cathode of a an MFC for H2O2 production are explored using linear sweep voltammetry (LSV) and rotating ring-disk electrode (RRDE) techniques. The oxygen reduction reaction (ORR) at the cathode has slow kinetics at conditions present in the MFC, making it important to find a catalyst type and loading which promote a 2e- (rather than 4e-) reaction to maximize H2O2 formation. Using LSV methods, I compared the cathodic overpotentials associated with graphite and Vulcan carbon catalysts as well as Nafion and AS-4 binders. Vulcan carbon catalyst with Nafion binder produced the lowest overpotentials of any binder/catalyst combinations. Additionally, I determined that pH control may be required at the cathode due to large potential losses caused by hydroxide (OH-) concentration gradients. Furthermore, RRDE tests indicate that Vulcan carbon catalyst with a Nafion binder has a higher H2O2 production efficiency at lower catalyst loadings, but the trade-off is a greater potential loss due to higher activation energy. Therefore, an intermediate catalyst loading of 0.5 mg/cm2 Vulcan carbon with Nafion binder is recommended for the final MFC design. The chosen catalyst, binder, and loading will maximize H2O2 production, optimize MFC performance, and minimize the need for additional energy input into the system.
ContributorsStadie, Mikaela Johanna (Author) / Torres, Cesar (Thesis director) / Popat, Sudeep (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
133790-Thumbnail Image.png
Description
The synthesis of the bis(2-diphenylphosphinoethyl)amine chelating ligand (1) was a crucial component in the preparation of non-canonical amino acids (NCAAs) throughout the project. Studies in this project indicated the need to isolate the ligand from its hydrochloride salt form seen in (1) which led to the synthesis of the brown

The synthesis of the bis(2-diphenylphosphinoethyl)amine chelating ligand (1) was a crucial component in the preparation of non-canonical amino acids (NCAAs) throughout the project. Studies in this project indicated the need to isolate the ligand from its hydrochloride salt form seen in (1) which led to the synthesis of the brown oil, (Ph2PCH2CH2)2NH, (2). The ligand features a phosphine-nitrogen-phosphine group that is not observed in existing NCAAs. Phosphine groups are rarely seen in existing NCAAs and avoided by biochemists because they tend to oxidize before metal addition. In this project, (1) was used in a 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU) mediated method and palladium-catalyzed method to tether an amino acid to the nitrogen atom of the ligand framework. Both methods were monitored through the use of Nuclear Magnetic Resonance (NMR) spectroscopy. While the palladium catalyzed method exhibited little to no coupling, the 31P NMR spectrum obtained for the HATU mediated method did reveal that some coupling had occurred. The unsuccessful attempts to tether an amino acid to (1) led to the hypothesis that the phosphine groups were interfering with the palladium catalyst during the cross-coupling reaction. In an effort to test this hypothesis, (2) was reacted with the dimer, [Rh(nbd)Cl]2, to coordinate the rhodium metal to the free phosphorous arms and the nitrogen atom of the isolated PNP ligand. The PNP-based metal complex was used in the palladium catalyzed method, but cross-coupling was not observed. The new PNP-based metal complex was investigated to demonstrate that it exhibits moisture and air stability.
ContributorsManjarrez, Yvonne (Author) / Trovitch, Ryan (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Herckes, Pierre (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05