Matching Items (3)
Filtering by

Clear all filters

151344-Thumbnail Image.png
Description
At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual

At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual to develop reproductive characteristics or serve as a worker. In order to gain insight into the evolution of reproductive plasticity in the social insects, I investigated caste determination and dominance in the ant Harpegnathos saltator, a species that retains a number of ancestral characteristics. Treatment of worker larvae with a juvenile hormone (JH) analog induced late-instar larvae to develop as queens. At the colony level, workers must have a mechanism to regulate larval development to prevent queens from developing out of season. I identified a new behavior in H. saltator where workers bite larvae to inhibit queen determination. Workers could identify larval caste based on a chemical signal specific to queen-destined larvae, and the production of this signal was directly linked to increased JH levels. This association provides a connection between the physiological factors that induce queen development and the production of a caste-specific larval signal. In addition to caste determination at the larval stage, adult workers of H. saltator compete to establish a reproductive hierarchy. Unlike other social insects, dominance in H. saltator was not related to differences in JH or ecdysteroid levels. Instead, changes in brain levels of biogenic amines, particularly dopamine, were correlated with dominance and reproductive status. Receptor genes for dopamine were expressed in both the brain and ovaries of H. saltator, and this suggests that dopamine may coordinate changes in behavior at the neurological level with ovarian status. Together, these studies build on our understanding of reproductive plasticity in social insects and provide insight into the evolution of a reproductive division of labor.
ContributorsPenick, Clint A (Author) / Liebig, Jürgen (Thesis advisor) / Brent, Colin (Committee member) / Gadau, Jürgen (Committee member) / Hölldobler, Bert (Committee member) / Rutowski, Ron (Committee member) / Arizona State University (Publisher)
Created2012
136301-Thumbnail Image.png
Description
In recent years, ecologists have begun to study the effects of urbanization on species diversity. While urban areas generally suffer decreased biodiversity, some species, termed “urban exploiters”, not only live in the city but depend on urban resources to thrive. It is hypothesized that urban exploiters may succeed in part

In recent years, ecologists have begun to study the effects of urbanization on species diversity. While urban areas generally suffer decreased biodiversity, some species, termed “urban exploiters”, not only live in the city but depend on urban resources to thrive. It is hypothesized that urban exploiters may succeed in part due to phenotypic plasticity, in which organisms rapidly adjust their physiology or behavior to adapt to novel environmental contexts. In the city, it may be adaptive to display thermal plasticity, as the urban heat island effect caused by concrete and asphalt infrastructure prevents cooling at night. In this study, we observed the decorated cricket Gryllodes sigillatus, an invasive urban exploiter found in metropolitan Phoenix, in two separate experiments. We hypothesized that heat tolerance and activity are both plastic traits in this species. In Experiment 1, we predicted that knock-down time, a measure of heat tolerance, would be negatively affected by acclimation to a laboratory environment. Our results suggest that heat tolerance is affected by recent thermal regimes and that laboratory acclimation decreases knock-down time. In Experiment 2, we predicted that activity would increase with temperature until a point of extreme heat, at which point activity would decline. Statistical analysis for the second experiment reveals that activity decreases at 33°C, a natural urban extreme. This suggests either that 33°C is a thermal limit to physiology or that G. sigillatus is able to alter its behavior to exploit local thermal heterogeneity.
ContributorsVannan, Annika (Author) / Johnson, James Chadwick (Thesis director) / Angilletta, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor) / School of Social and Behavioral Sciences (Contributor)
Created2015-05
133771-Thumbnail Image.png
Description
Urbanization rapidly alters the environment, leading to a decrease in biodiversity in urban areas. A challenge associated with urbanized areas is the increased heat caused by the urban heat island effect. Heat may have an important impact on arthropods particularly due to their status as ectotherms. Animal behavior reveals how

Urbanization rapidly alters the environment, leading to a decrease in biodiversity in urban areas. A challenge associated with urbanized areas is the increased heat caused by the urban heat island effect. Heat may have an important impact on arthropods particularly due to their status as ectotherms. Animal behavior reveals how individuals interact with their environment. A behavioral syndrome describes consistent individual differences in behaviors that are correlated across different behavioral contexts or situations. Understanding the Western Black Widow's behavioral responses to the urban heat island effect has important implications for the control of a pest species. In this study, the relationship between rising urban temperatures and voracity, web-building, and cannibalism behaviors of juvenile Western Black Widows was examined. Spiders raised in the urban temperature treatment were predicted to have more aggressive behavioral syndromes, characterized by shorter latencies to forage, greater web-building activity, and shorter latencies to cannibalize as compared to spiders raised in rural or intermediate temperature treatments. A correlation between the latency to attack the first fly and second fly was found, however there were no other correlations evidencing a behavioral syndrome. Temperature was found to affect foraging, web-building, and cannibalism behaviors where spiders in urban areas demonstrated increased activity in all behavioral contexts. The possession of behavioral plasticity rather than a behavioral syndrome is likely what allows Black Widows to be successful urban pests.
ContributorsGarver, Emily Elizabeth (Author) / Johnson, James Chadwick (Thesis director) / Foltz-Sweat, Jennifer (Committee member) / Kitchen, Kathryn (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05