Matching Items (4)
137152-Thumbnail Image.png
Description
Radio Frequency Identification (RFID) technology allows objects to be identified electronically by way of a small electronic tag. RFID is quickly becoming quite popular, and there are many security hurdles for this technology to overcome. The iCLASS line of RFID, produced by HID Global, is one such technology that is

Radio Frequency Identification (RFID) technology allows objects to be identified electronically by way of a small electronic tag. RFID is quickly becoming quite popular, and there are many security hurdles for this technology to overcome. The iCLASS line of RFID, produced by HID Global, is one such technology that is widely used for secure access control and applications where a contactless authentication element is desirable. Unfortunately, iCLASS has been shown to have security issues. Nevertheless customers continue to use it because of the great cost that would be required to completely replace it. This Honors Thesis will address attacks against iCLASS and means for countering them that do not require such an overhaul.
ContributorsMellott, Matthew John (Author) / Ahn, Gail-Joon (Thesis director) / Thorstenson, Tina (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
133748-Thumbnail Image.png
Description
This research report investigates the feasibility of using RFID in Traffic Sign Recognition (TSR) Systems for autonomous vehicles, specifically driver-less cars. Driver-less cars are becoming more prominent in society but must be designed to integrate with the current transportation infrastructure. Current research in TSR systems use image processing as well

This research report investigates the feasibility of using RFID in Traffic Sign Recognition (TSR) Systems for autonomous vehicles, specifically driver-less cars. Driver-less cars are becoming more prominent in society but must be designed to integrate with the current transportation infrastructure. Current research in TSR systems use image processing as well as LIDAR to identify traffic signs, yet these are highly dependent on lighting conditions, camera quality and sign visibility. The read rates of current TSR systems in literature are approximately 96 percent. The usage of RFID in TSR systems can improve the performance of traditional TSR systems. An RFID TSR was designed for the Autonomous Pheeno Test-bed at the Arizona State University (ASU) Autonomous Collective Systems (ACS) Laboratory. The system was tested with varying parameters to see the effect of the parameters on the read rate. It was found that high reader strength and low tag distance had a maximum read rate of 96.3 percent, which is comparable to existing literature. It was proven that an RFID TSR can perform as well as traditional TSR systems, and has the capacity to improve accuracy when used alongside RGB cameras and LIDAR.
ContributorsMendoza, Madilyn Kido (Author) / Berman, Spring (Thesis director) / Yu, Hongbin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
147676-Thumbnail Image.png
Description

A primary need of Forensic science is to individualize missing persons that cannot be identified after death. With the use of advanced technology, Radio Frequency Identification (RFID) implant chips can drastically improve digital tracking and enable robust biological and legal identification. In this paper, I will discuss applications between different

A primary need of Forensic science is to individualize missing persons that cannot be identified after death. With the use of advanced technology, Radio Frequency Identification (RFID) implant chips can drastically improve digital tracking and enable robust biological and legal identification. In this paper, I will discuss applications between different microchip technologies and indicate reasons why the RFID chip is more useful for forensic science. My results state that an RFID chip is significantly more capable of integrating a mass volume of background information, and can utilize implanted individuals’ DNA profiles to decrease the missing persons database backlogs. Since today’s society uses a lot of digital devices that can ultimately identify people by simple posts or geolocation, Forensic Science can harness that data as an advantage to help serve justice for the public in giving loved ones closure.

ContributorsChastain, Hope Natasha (Author) / Kanthswamy, Sree (Thesis director) / Oldt, Robert (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This honors thesis explores the potential use of LoRa technology for detecting moisture in a diaper. Tests of both onboard and external humidity sensors coupled with LoRa transmission are incredibly promising. The potential scale of the final device also shows much promise, measuring smaller than a U.S. dime. However, the

This honors thesis explores the potential use of LoRa technology for detecting moisture in a diaper. Tests of both onboard and external humidity sensors coupled with LoRa transmission are incredibly promising. The potential scale of the final device also shows much promise, measuring smaller than a U.S. dime. However, the estimated cost for producing these proof-of-concept units in bulk is $19.41 per unit. While this is believed to be a pessimistic estimate of the price, the cost of production remains too high regardless for large-scale implementation. The thesis concludes by emphasizing the need for further research and development to optimize the design and reduce the cost of production. Despite the limitations imposed by price, the idea of using LoRa in detecting moisture in a diaper remains intriguing and promising, however, RFID technology has many advantages, such as size, cost, and passive power features.

ContributorsBetlaf, Garrett (Author) / Aberle, James (Thesis director) / McDonald, James (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05