Matching Items (2)
Filtering by

Clear all filters

134375-Thumbnail Image.png
Description
To determine the effects of exhaust heat recovery systems on small engines, an experiment was performed to measure the power losses of an engine with restricted exhaust flow. In cooperation with ASU's SAE Formula race team, a water brake dynamometer was refurbished and connected to the 2017 racecar engine. The

To determine the effects of exhaust heat recovery systems on small engines, an experiment was performed to measure the power losses of an engine with restricted exhaust flow. In cooperation with ASU's SAE Formula race team, a water brake dynamometer was refurbished and connected to the 2017 racecar engine. The engine was mounted with a diffuser disc exhaust to restrict flow, and a pressure sensor was installed in the O2 port to measure pressure under different restrictions. During testing, problems with the equipment prevented suitable from being generated. Using failure root cause analysis, the failure modes were identified and plans were made to resolve those issues. While no useful data was generated, the project successfully rebuilt a dynamometer for students to use for future engine research.
ContributorsRoss, Zachary David (Author) / Middleton, James (Thesis director) / Steele, Bruce (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134064-Thumbnail Image.png
Description
This paper describes the research done to attempt to scale up thrusts produced by ionic wind thrusters, or "lifters" to magnitudes needed to power a 2 kg hobbyist remote-control airplane. It includes background information on the Biefeld-Brown effect and the thrust it produces, an experiment that attempted to prove that

This paper describes the research done to attempt to scale up thrusts produced by ionic wind thrusters, or "lifters" to magnitudes needed to power a 2 kg hobbyist remote-control airplane. It includes background information on the Biefeld-Brown effect and the thrust it produces, an experiment that attempted to prove that thrust can be scaled up from smaller ionic wind thrusters to larger scales, and two models predicting thruster geometries and power sources needed to reach these thrusts. An ionic wind thruster could not be created that would power the hobbyist remote as a high-voltage power source with voltage and power high enough could not be obtained. Thrusters were created for the experiment using balsa wood, aluminum foil, and thin copper wire, and were powered using a 30 kV transformer. The thrusters attempted to test for correlations between thrust, electrode length, and current; electric field strength, and thrust; and thrust optimization through opening up air flow through the collector electrode. The experiment was inconclusive as all the thrusters failed to produce measurable thrust. Further experimentation suggests the chief failure mode is likely conduction from the collector electrode to the nearby large conductive surface of the scale.
ContributorsHaug, Andrew James (Author) / White, Daniel (Thesis director) / Takahashi, Timothy (Committee member) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Military Science (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12