Matching Items (1)
Filtering by

Clear all filters

134929-Thumbnail Image.png
Description
The ability to profile proteins allows us to gain a deeper understanding of organization, regulation, and function of different biological systems. Many technologies are currently being used in order to accurately perform the protein profiling. Some of these technologies include mass spectrometry, microarray based analysis, and fluorescence microscopy. Deeper analysis

The ability to profile proteins allows us to gain a deeper understanding of organization, regulation, and function of different biological systems. Many technologies are currently being used in order to accurately perform the protein profiling. Some of these technologies include mass spectrometry, microarray based analysis, and fluorescence microscopy. Deeper analysis of these technologies have demonstrated limitations which have taken away from either the efficiency or the accuracy of the results. The objective of this project was to develop a technology in which highly multiplexed single cell in situ protein analysis can be completed in a comprehensive manner without the loss of the protein targets. This was accomplished in the span of 3 steps which is referred to as the immunofluorescence cycle. Antibodies with attached fluorophores with the help of novel azide-based cleavable linker are used to detect protein targets. Fluorescence imaging and data storage procedures are done on the targets and then the fluorophores are cleaved from the antibodies without the loss of the protein targets. Continuous cycles of the immunofluorescence procedure can help create a comprehensive and quantitative profile of the protein. The development of such a technique will not only help us understand biological systems such as solid tumor, brain tissues, and developing embryos. But it will also play a role in real-world applications such as signaling network analysis, molecular diagnosis and cellular targeted therapies.
ContributorsGupta, Aakriti (Author) / Guo, Jia (Thesis director) / Liang, Jianming (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12