Matching Items (4)
Filtering by

Clear all filters

154132-Thumbnail Image.png
Description
The purpose of this study was to determine the applicability of fluorescent microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through the coagulation, flocculation, sedimentation, and filtration steps of conventional water treatment. In order to maintain accuracy and applicability, a local water treatment facility was chosen as

The purpose of this study was to determine the applicability of fluorescent microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through the coagulation, flocculation, sedimentation, and filtration steps of conventional water treatment. In order to maintain accuracy and applicability, a local water treatment facility was chosen as the system to model. The city of Chandler Arizona utilizes conventional treatment methodologies to remove pathogens from municipal drinking water and thus the water, coagulant, polymer, and doses concentrations were sourced directly from the plant. Jar testing was performed on four combinations of coagulant, polymer, and fluorescent microsphere to determine if the log removal was similar to that of Cryptosporidium oocysts.

Complications with the material properties of the microspheres arose during testing that ultimately yielded unfavorable but conclusive results. Log removal of microspheres did not increase with added coagulant in the predicted manner, though the beads were seen aggregating, the low density of the particles made the sedimentation step inefficient. This result can be explained by the low density of the microspheres as well as the potential presence of residual coagulant present in the system. Given the unfavorable properties of the beads, they do not appear to be a suitable candidate for the surrogacy of Cryptosporidium oocysts in conventional drinking water treatment. The beads in their current state are not an adequate surrogate; however, future testing has been outlined to modify the experiment in such a way that the microspheres should behave like oocysts in terms of physical transportation.
ContributorsLinks, Alexander Glenn (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2015
Description
The understanding of normal human physiology and disease pathogenesis shows great promise for progress with increasing ability to profile genomic loci and transcripts in single cells in situ. Using biorthogonal cleavable fluorescent oligonucleotides, a highly multiplexed single-cell in situ RNA and DNA analysis is reported. In this report, azide-based cleavable

The understanding of normal human physiology and disease pathogenesis shows great promise for progress with increasing ability to profile genomic loci and transcripts in single cells in situ. Using biorthogonal cleavable fluorescent oligonucleotides, a highly multiplexed single-cell in situ RNA and DNA analysis is reported. In this report, azide-based cleavable linker connects oligonucleotides to fluorophores to show nucleic acids through in situ hybridization. Post-imaging, the fluorophores are effectively cleaved off in half an hour without loss of RNA or DNA integrity. Through multiple cycles of hybridization, imaging, and cleavage this approach proves to quantify thousands of different RNA species or genomic loci because of single-molecule sensitivity in single cells in situ. Different nucleic acids can be imaged by shown by multi-color staining in each hybridization cycle, and that multiple hybridization cycles can be run on the same specimen. It is shown that in situ analysis of DNA, RNA and protein can be accomplished using both cleavable fluorescent antibodies and oligonucleotides. The highly multiplexed imaging platforms will have the potential for wide applications in both systems biology and biomedical research. Thus, proving to be cost effective and time effective.
ContributorsSamuel, Adam David (Author) / Guo, Jia (Thesis director) / Liu, Wei (Committee member) / Wang, Xu (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155850-Thumbnail Image.png
Description
This study was designed to provide insight into microbial transport kinetics which might be applied to bioremediation technology development and prevention of groundwater susceptibility to pathogen contamination. Several pilot-scale experiments were conducted in a saturated, 2 dimensional, packed porous media tank to investigate the transport of Escherichia coli bacteria, P22

This study was designed to provide insight into microbial transport kinetics which might be applied to bioremediation technology development and prevention of groundwater susceptibility to pathogen contamination. Several pilot-scale experiments were conducted in a saturated, 2 dimensional, packed porous media tank to investigate the transport of Escherichia coli bacteria, P22 bacteriophage, and a visual tracer and draw comparisons and/or conclusions. A constructed tank was packed with an approximate 3,700 cubic inches (in3) of a fine grained, homogeneous, chemically inert sand which allowed for a controlled system. Sampling ports were located at 5, 15, 25, and 25 vertical inches from the base of the 39 inch saturated zone and were used to assess the transport of the selected microorganisms. Approximately 105 cells of E. coli or P22 were injected into the tank and allowed to move through the media at approximately 10.02 inches per day. Samples were collected intermittently after injection based off of an estimated sampling schedule established from the visual tracer.

The results suggest that bacteriophages pass through soil faster and with greater recovery than bacteria. P22 in the tank reservoir experienced approximately 1 log reduction after 36 hours. After 85 hours, P22 was still detected in the reservoir after experiencing a 2 log reduction from the start of the experiment. E. coli either did not reach the outlet or died before sampling, while P22 was able to be recovered. Bacterial breakthrough curves were produced for the microbial indicators and illustrate the peak concentrations found for each sampling port. For E. coli, concentrations at the 5 inch port peaked at a maximum of 5170 CFU/mL, and eventually at the 25 inch port at a maximum of 90 CFU/mL. It is presumed that E. coli might have experienced significant filtration, straining and attachment, while P22 might have experienced little adsorption and instead was transported rapidly in long distances and was able to survive for the duration of the experiment.
ContributorsAcosta, Jazlyn Cauren (Author) / Abbaszadegan, Morteza (Thesis advisor) / Dahlen, Paul (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2017
157739-Thumbnail Image.png
Description
The study was to analyze the extent of bacterial transport in a two-dimensional tank under saturated conditions. The experiments were done in a 2-D tank packed with 3,700 in3 of fine grained, homogenous, chemically inert sand under saturated conditions. The tank used for transport was decontaminated by backwashing with 0.6%

The study was to analyze the extent of bacterial transport in a two-dimensional tank under saturated conditions. The experiments were done in a 2-D tank packed with 3,700 in3 of fine grained, homogenous, chemically inert sand under saturated conditions. The tank used for transport was decontaminated by backwashing with 0.6% chlorine solution with subsequent backwashing with chlorine-neutral water (tap water and Na2S2O3) thus ensuring no residual chlorine in the tank. The transport of bacteria was measured using samples collected from ports at vertical distances of 5, 15 and 25 inches (12.7, 38.1 and 63.5 cm) from the surface of the sand on both sides for the 2-D tank. An influent concentration of 105 CFU/mL was set as a baseline for both microbes and the percolation rate was set at 11.37 inches/day using a peristaltic pump at the bottom outlet. At depths of 5, 15 and 25 inches, E. coli breakthroughs were recorded at 5, 17 and 28 hours for the ports on the right side and 7, 17 and 29 hours for the ports on the left sides, respectively. At respective distances Legionella breakthroughs were recorded at 8, 22 and 35 hours for the ports on the right side and 9, 24, 36 hours for the ports on the left side, respectively which is homologous to its pleomorphic nature. A tracer test was done and the visual breakthroughs were recorded at the same depths as the microbes. The breakthroughs for the dye at depths of 5, 15 and 25 inches, were recorded at 13.5, 41 and 67 hours for the ports on the right side and 15, 42.5 and 69 hours for the ports on the left side, respectively. However, these are based on visual estimates and the physical breakthrough could have happened at the respective heights before the reported times. This study provided a good basis for the premise that transport of bacterial cells and chemicals exists under recharge practices.
ContributorsMondal, Indrayudh (Author) / Abbaszadegan, Morteza (Thesis advisor) / Dahlen, Paul (Committee member) / Delgado, Anca (Committee member) / Arizona State University (Publisher)
Created2019