Matching Items (3)
Filtering by

Clear all filters

136674-Thumbnail Image.png
Description
As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable.

As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable. Biological systems, on the other hand, are innately efficient both in terms of time and energy by handling tasks at the molecular level. Utilizing this efficiency is at the core of this research. Proper manipulation of even common proteins can render complexes functionalized for specific tasks. In this case, the coupling of a rhenium-based organometallic ligand to a modified myoglobin containing a zinc porphyrin, allow for efficient reduction of carbon dioxide, resulting in energy that can be harnessed and byproducts which can be used for further processing. Additionally, a rhenium based ligand functionalized via biotin is tested in conjunction with streptavidin and ruthenium-bipyridine.
ContributorsAllen, Jason Kenneth (Author) / Ghirlanda, Giovanna (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-12
133676-Thumbnail Image.png
Description
Gold nanoparticles are valuable for their distinct properties and nanotechnology applications. Because their properties are controlled in part by nanoparticle size, manipulation of synthesis method is vital, since the chosen synthesis method has a significant effect on nanoparticle size. By aiding mediating synthesis with proteins, unique nanoparticle structures can form,

Gold nanoparticles are valuable for their distinct properties and nanotechnology applications. Because their properties are controlled in part by nanoparticle size, manipulation of synthesis method is vital, since the chosen synthesis method has a significant effect on nanoparticle size. By aiding mediating synthesis with proteins, unique nanoparticle structures can form, which open new possibilities for potential applications. Furthermore, protein-mediated synthesis favors conditions that are more environmentally and biologically friendly than traditional synthesis methods. Thus far, gold particles have been synthesized through mediation with jack bean urease (JBU) and para mercaptobenzoic acid (p-MBA). Nanoparticles synthesized with JBU were 80-90nm diameter in size, while those mediated by p-MBA were revealed by TEM to have a size between 1-3 nm, which was consistent with the expectation based on the black-red color of solution. Future trials will feature replacement of p-MBA by amino acids of similar structure, followed by peptides containing similarly structured amino acids.
ContributorsHathorn, Gregory Michael (Author) / Nannenga, Brent (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134847-Thumbnail Image.png
Description
The following paper discusses the potential for Designed Ankyrin Repeat Proteins (DARPin) use as a diagnostic tool for neurodegenerative diseases in particular Alzheimer's disease (AD) and Parkinson's disease (PD). The two structures investigated for AD and PD were ADC7 and PDC1. Plasmid transformation was performed in order to grow the

The following paper discusses the potential for Designed Ankyrin Repeat Proteins (DARPin) use as a diagnostic tool for neurodegenerative diseases in particular Alzheimer's disease (AD) and Parkinson's disease (PD). The two structures investigated for AD and PD were ADC7 and PDC1. Plasmid transformation was performed in order to grow the DARPin in E. coli for simple expression. Following growth and purification the proteins were validated using SDS-PAGE, Western Blot, BCA and indirect sandwich ELISA using transgenic mouse brain tissue. Targeted functionality of the DARPin structure was utilized during characterization methods to ensure the efficacy of the protein as a diagnostic for the respective disease targets. Both the ADC7 and PDC1 demonstrated improved binding with transgenic mice compared to wild type with a maximum 1.8 and 1.7 relative ratio, respectively. Additionally, both of the proteins demonstrated exclusive binding to their disease target and did not provide false positive results.
ContributorsTindell, John (Co-author) / Card, Emma (Co-author) / Sierks, Michael (Thesis director) / Nannenga, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12