Matching Items (2)
Filtering by

Clear all filters

133865-Thumbnail Image.png
Description
As construction and building methods advance so should their focus on reconstruction post-natural disasters. For the past 50 years there has been an average of 6.2 hurricanes making landfall, and several recent unfortunate occurrences in the past year that have caused immeasurable damage and taken priceless lives (Chris Landsea 2017).

As construction and building methods advance so should their focus on reconstruction post-natural disasters. For the past 50 years there has been an average of 6.2 hurricanes making landfall, and several recent unfortunate occurrences in the past year that have caused immeasurable damage and taken priceless lives (Chris Landsea 2017). Damages could have been significantly reduced to residential homes and lives saved if proper, hurricane-resistant construction was used. It is important to continue advancement in efficient planning and reconstructive methods to restore individuals into their homes and ensure their safety in the future. Utilizing tested resilient building methods may increase construction costs but has a visible payoff through mitigation of economic losses in the future. This can also help develop response and mitigation plans based on the very specific conditions of each community or affected location. To do so, it is crucial to continue research and test various methods of construction and materials in residential homes. This study was a comparative analysis of the current roof systems implemented in residential homes, the role of hurricane testing facilities in maintaining building codes, and how damage incurred by hurricanes can be significantly reduced through a shift in the approach of homeowner insurance incentive. The purpose of this study was to provide a feasible and practicable solution for increasing implementation of hurricane resistant construction into homes. The results of this analysis concluded that there is a low percentage of homeowners investing in making their homes hurricane resilient. By re-inventing the incentive methods that insurance companies offer, this problem can step into the right direction in making more homes hurricane resilient consequently reducing damages, deaths, and economic loss.
ContributorsVarkalaite, Migle (Author) / Sullivan, Kenneth (Thesis director) / Ayer, Steven (Committee member) / School of International Letters and Cultures (Contributor) / Del E. Webb Construction (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
158300-Thumbnail Image.png
Description
At least 30 datacenters either broke ground or hit the planning stages around the United States over the past two years. On such technically complex projects, Mechanical, Electrical and Plumbing (MEP) systems make up a huge portion of the construction work which makes data center market very promising for MEP

At least 30 datacenters either broke ground or hit the planning stages around the United States over the past two years. On such technically complex projects, Mechanical, Electrical and Plumbing (MEP) systems make up a huge portion of the construction work which makes data center market very promising for MEP subcontractors in the next years. However, specialized subcontractors such as electrical subcontractors are struggling to keep crews motivated. Due to the hard work involved in the construction industry, it is not appealing for young workers. According to The Center for Construction Research and Training, the percentages of workers aged between 16 to 19 years decreased by 67%, 20 to 24 years decreased by 49% and 25 to 34 age decreased by 32% from 1985 to 2015. Furthermore, the construction industry has been lagging other industries in combatting its decline in productivity. Electrical activities, especially cable pulling, are some of the most physically unsafe, tedious, and labor-intensive electrical process on data center projects. The motivation of this research is the need to take a closer look at how this process is being done and find improvement opportunities. This thesis focuses on one potential restructuring of the cable pulling and termination process; the goal of this restructuring is optimization for automation. Through process mapping, this thesis presents a proposed cable pulling and termination process that utilizes automation to make use of the best abilities of human and robots/machines. It will also provide a methodology for process improvement that is applicable to the electrical scope of work as well as that of other construction trades.
ContributorsHammam, MennatAllah (Author) / Parrish, Kristen (Thesis advisor) / Ayer, Steven (Committee member) / Irish, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2020